Cargando…
Identifying classifier input signals to predict a cross-slope during transtibial amputee walking
Advanced prosthetic foot designs often incorporate mechanisms that adapt to terrain changes in real-time to improve mobility. Early identification of terrain (e.g., cross-slopes) is critical to appropriate adaptation. This study suggests that a simple classifier based on linear discriminant analysis...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815617/ https://www.ncbi.nlm.nih.gov/pubmed/29451922 http://dx.doi.org/10.1371/journal.pone.0192950 |
Sumario: | Advanced prosthetic foot designs often incorporate mechanisms that adapt to terrain changes in real-time to improve mobility. Early identification of terrain (e.g., cross-slopes) is critical to appropriate adaptation. This study suggests that a simple classifier based on linear discriminant analysis can accurately predict a cross-slope encountered (0°, -15°, 15°) using measurements from the residual limb, primarily from the prosthesis itself. The classifier was trained and tested offline using motion capture and in-pylon sensor data collected during walking trials in mid-swing and early stance. Residual limb kinematics, especially measurements from the foot, shank and ankle, successfully predicted the cross-slope terrain with high accuracy (99%). Although accuracy decreased when predictions were made for test data instead of the training data, the accuracy was still relatively high for one input signal set (>89%) and moderate for three others (>71%). This suggests that classifiers can be designed and generalized to be effective for new conditions and/or subjects. While measurements of shank acceleration and angular velocity from only in-pylon sensors were insufficient to accurately predict the cross-slope terrain, the addition of foot and ankle kinematics from motion capture data allowed accurate terrain prediction. Inversion angular velocity and foot vertical velocity were particularly useful. As in-pylon sensor data and shank kinematics from motion capture appeared interchangeable, combining foot and ankle kinematics from prosthesis-mounted sensors with shank kinematics from in-pylon sensors may provide enough information to accurately predict the terrain. |
---|