Cargando…

Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats

The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to p...

Descripción completa

Detalles Bibliográficos
Autores principales: Holmes, Nathan M., Raipuria, Mukesh, Qureshi, Omar A., Killcross, Simon, Westbrook, Fred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815846/
https://www.ncbi.nlm.nih.gov/pubmed/29464195
http://dx.doi.org/10.1523/ENEURO.0381-17.2017
_version_ 1783300580614078464
author Holmes, Nathan M.
Raipuria, Mukesh
Qureshi, Omar A.
Killcross, Simon
Westbrook, Fred
author_facet Holmes, Nathan M.
Raipuria, Mukesh
Qureshi, Omar A.
Killcross, Simon
Westbrook, Fred
author_sort Holmes, Nathan M.
collection PubMed
description The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to pairings of two innocuous stimuli in stage 1, S2 and S1, and then to pairings of S1 and shock in stage 2. As a consequence of this training, control rats displayed defensive reactions (freezing) when tested with both S2 and S1. The freezing to S2 is a product of two associations formed in training: an S2-S1 association in stage 1 and an S1-shock association in stage 2. We examined the roles of two medial temporal lobe (MTL) structures in consolidation of the S2-S1 association: the perirhinal cortex (PRh) and basolateral complex of the amygdala (BLA). When the S2-S1 association formed in a safe context, its consolidation required neuronal activity in the PRh (but not BLA), including activation of AMPA receptors and MAPK signaling. In contrast, when the S2-S1 association formed in a dangerous context, or when the context was rendered dangerous immediately after the association had formed, its consolidation required neuronal activity in the BLA (but not PRh), including activation of AMPA receptors and MAPK signaling. These roles of the PRh and BLA show that danger changes the way the mammalian brain stores information about innocuous events. They are discussed with respect to danger-induced changes in stimulus processing.
format Online
Article
Text
id pubmed-5815846
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-58158462018-02-20 Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats Holmes, Nathan M. Raipuria, Mukesh Qureshi, Omar A. Killcross, Simon Westbrook, Fred eNeuro New Research The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to pairings of two innocuous stimuli in stage 1, S2 and S1, and then to pairings of S1 and shock in stage 2. As a consequence of this training, control rats displayed defensive reactions (freezing) when tested with both S2 and S1. The freezing to S2 is a product of two associations formed in training: an S2-S1 association in stage 1 and an S1-shock association in stage 2. We examined the roles of two medial temporal lobe (MTL) structures in consolidation of the S2-S1 association: the perirhinal cortex (PRh) and basolateral complex of the amygdala (BLA). When the S2-S1 association formed in a safe context, its consolidation required neuronal activity in the PRh (but not BLA), including activation of AMPA receptors and MAPK signaling. In contrast, when the S2-S1 association formed in a dangerous context, or when the context was rendered dangerous immediately after the association had formed, its consolidation required neuronal activity in the BLA (but not PRh), including activation of AMPA receptors and MAPK signaling. These roles of the PRh and BLA show that danger changes the way the mammalian brain stores information about innocuous events. They are discussed with respect to danger-induced changes in stimulus processing. Society for Neuroscience 2018-02-14 /pmc/articles/PMC5815846/ /pubmed/29464195 http://dx.doi.org/10.1523/ENEURO.0381-17.2017 Text en Copyright © 2018 Holmes et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle New Research
Holmes, Nathan M.
Raipuria, Mukesh
Qureshi, Omar A.
Killcross, Simon
Westbrook, Fred
Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
title Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
title_full Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
title_fullStr Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
title_full_unstemmed Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
title_short Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
title_sort danger changes the way the mammalian brain stores information about innocuous events: a study of sensory preconditioning in rats
topic New Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815846/
https://www.ncbi.nlm.nih.gov/pubmed/29464195
http://dx.doi.org/10.1523/ENEURO.0381-17.2017
work_keys_str_mv AT holmesnathanm dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats
AT raipuriamukesh dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats
AT qureshiomara dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats
AT killcrosssimon dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats
AT westbrookfred dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats