Cargando…
Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats
The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815846/ https://www.ncbi.nlm.nih.gov/pubmed/29464195 http://dx.doi.org/10.1523/ENEURO.0381-17.2017 |
_version_ | 1783300580614078464 |
---|---|
author | Holmes, Nathan M. Raipuria, Mukesh Qureshi, Omar A. Killcross, Simon Westbrook, Fred |
author_facet | Holmes, Nathan M. Raipuria, Mukesh Qureshi, Omar A. Killcross, Simon Westbrook, Fred |
author_sort | Holmes, Nathan M. |
collection | PubMed |
description | The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to pairings of two innocuous stimuli in stage 1, S2 and S1, and then to pairings of S1 and shock in stage 2. As a consequence of this training, control rats displayed defensive reactions (freezing) when tested with both S2 and S1. The freezing to S2 is a product of two associations formed in training: an S2-S1 association in stage 1 and an S1-shock association in stage 2. We examined the roles of two medial temporal lobe (MTL) structures in consolidation of the S2-S1 association: the perirhinal cortex (PRh) and basolateral complex of the amygdala (BLA). When the S2-S1 association formed in a safe context, its consolidation required neuronal activity in the PRh (but not BLA), including activation of AMPA receptors and MAPK signaling. In contrast, when the S2-S1 association formed in a dangerous context, or when the context was rendered dangerous immediately after the association had formed, its consolidation required neuronal activity in the BLA (but not PRh), including activation of AMPA receptors and MAPK signaling. These roles of the PRh and BLA show that danger changes the way the mammalian brain stores information about innocuous events. They are discussed with respect to danger-induced changes in stimulus processing. |
format | Online Article Text |
id | pubmed-5815846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-58158462018-02-20 Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats Holmes, Nathan M. Raipuria, Mukesh Qureshi, Omar A. Killcross, Simon Westbrook, Fred eNeuro New Research The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to pairings of two innocuous stimuli in stage 1, S2 and S1, and then to pairings of S1 and shock in stage 2. As a consequence of this training, control rats displayed defensive reactions (freezing) when tested with both S2 and S1. The freezing to S2 is a product of two associations formed in training: an S2-S1 association in stage 1 and an S1-shock association in stage 2. We examined the roles of two medial temporal lobe (MTL) structures in consolidation of the S2-S1 association: the perirhinal cortex (PRh) and basolateral complex of the amygdala (BLA). When the S2-S1 association formed in a safe context, its consolidation required neuronal activity in the PRh (but not BLA), including activation of AMPA receptors and MAPK signaling. In contrast, when the S2-S1 association formed in a dangerous context, or when the context was rendered dangerous immediately after the association had formed, its consolidation required neuronal activity in the BLA (but not PRh), including activation of AMPA receptors and MAPK signaling. These roles of the PRh and BLA show that danger changes the way the mammalian brain stores information about innocuous events. They are discussed with respect to danger-induced changes in stimulus processing. Society for Neuroscience 2018-02-14 /pmc/articles/PMC5815846/ /pubmed/29464195 http://dx.doi.org/10.1523/ENEURO.0381-17.2017 Text en Copyright © 2018 Holmes et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Holmes, Nathan M. Raipuria, Mukesh Qureshi, Omar A. Killcross, Simon Westbrook, Fred Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats |
title | Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats |
title_full | Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats |
title_fullStr | Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats |
title_full_unstemmed | Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats |
title_short | Danger Changes the Way the Mammalian Brain Stores Information About Innocuous Events: A Study of Sensory Preconditioning in Rats |
title_sort | danger changes the way the mammalian brain stores information about innocuous events: a study of sensory preconditioning in rats |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815846/ https://www.ncbi.nlm.nih.gov/pubmed/29464195 http://dx.doi.org/10.1523/ENEURO.0381-17.2017 |
work_keys_str_mv | AT holmesnathanm dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats AT raipuriamukesh dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats AT qureshiomara dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats AT killcrosssimon dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats AT westbrookfred dangerchangesthewaythemammalianbrainstoresinformationaboutinnocuouseventsastudyofsensorypreconditioninginrats |