Cargando…

An alternative approach for evaluating the phenotypic virulence factors of pathogenic Escherichia coli

Escherichia coli is a recognized zoonotic food-borne pathogen; however, the use of polymerase chain reaction (PCR) in the underdeveloped countries to differentiate pathogenic from non-pathogenic E. coli is a problematic issue. Our grail was to assess the phenotypic virulence markers motility, hemoly...

Descripción completa

Detalles Bibliográficos
Autores principales: Osman, Kamelia M., Hessain, Ashgan M., Abo-shama, Usama H., Girh, Zeinab M., Kabli, Saleh A., Hemeg, Hassan A., Moussa, Ihab M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815987/
https://www.ncbi.nlm.nih.gov/pubmed/29472764
http://dx.doi.org/10.1016/j.sjbs.2017.05.002
Descripción
Sumario:Escherichia coli is a recognized zoonotic food-borne pathogen; however, the use of polymerase chain reaction (PCR) in the underdeveloped countries to differentiate pathogenic from non-pathogenic E. coli is a problematic issue. Our grail was to assess the phenotypic virulence markers motility, hemolysin, congo red agar, embryo lethality assay and serum resistance for pathogenic E. coli (PEC) correlated to PCR tests which is currently used world-wide to evaluate the PEC. The 448 strains of Escherichia coli that were isolated from different sources, were characterized for phenotypic virulence factors such as motility, hemolysin, Congo red binding, Embryo Lethality assay (ELA) and serum resistance, as well as antibiotic susceptibility using disc diffusion method to 23 antibiotics. Results exhibited 100% motility and Congo red binding, 97.1% for hemolysin production and 90.2% in the ELA. As a result, we were able to hypothetically conclude that the aforementioned virulence markers are plain, straightforward, economical, rapid, more dynamic, uncomplicated methodology, duplicatable and cost next to nothing when compared to the molecular PCR. Their implementation in a diagnostic microbiology laboratory for vetting is a rewarding task in the underdeveloped countries. It augments endeavors to minimize the use of PCR in our investigations especially during epidemiological and outbreak investigations of PEC.