Cargando…
Investigating the parameter space of evolutionary algorithms
Evolutionary computation (EC) has been widely applied to biological and biomedical data. The practice of EC involves the tuning of many parameters, such as population size, generation count, selection size, and crossover and mutation rates. Through an extensive series of experiments over multiple ev...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816380/ https://www.ncbi.nlm.nih.gov/pubmed/29467825 http://dx.doi.org/10.1186/s13040-018-0164-x |
_version_ | 1783300661630205952 |
---|---|
author | Sipper, Moshe Fu, Weixuan Ahuja, Karuna Moore, Jason H. |
author_facet | Sipper, Moshe Fu, Weixuan Ahuja, Karuna Moore, Jason H. |
author_sort | Sipper, Moshe |
collection | PubMed |
description | Evolutionary computation (EC) has been widely applied to biological and biomedical data. The practice of EC involves the tuning of many parameters, such as population size, generation count, selection size, and crossover and mutation rates. Through an extensive series of experiments over multiple evolutionary algorithm implementations and 25 problems we show that parameter space tends to be rife with viable parameters, at least for the problems studied herein. We discuss the implications of this finding in practice for the researcher employing EC. |
format | Online Article Text |
id | pubmed-5816380 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-58163802018-02-21 Investigating the parameter space of evolutionary algorithms Sipper, Moshe Fu, Weixuan Ahuja, Karuna Moore, Jason H. BioData Min Research Evolutionary computation (EC) has been widely applied to biological and biomedical data. The practice of EC involves the tuning of many parameters, such as population size, generation count, selection size, and crossover and mutation rates. Through an extensive series of experiments over multiple evolutionary algorithm implementations and 25 problems we show that parameter space tends to be rife with viable parameters, at least for the problems studied herein. We discuss the implications of this finding in practice for the researcher employing EC. BioMed Central 2018-02-17 /pmc/articles/PMC5816380/ /pubmed/29467825 http://dx.doi.org/10.1186/s13040-018-0164-x Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Sipper, Moshe Fu, Weixuan Ahuja, Karuna Moore, Jason H. Investigating the parameter space of evolutionary algorithms |
title | Investigating the parameter space of evolutionary algorithms |
title_full | Investigating the parameter space of evolutionary algorithms |
title_fullStr | Investigating the parameter space of evolutionary algorithms |
title_full_unstemmed | Investigating the parameter space of evolutionary algorithms |
title_short | Investigating the parameter space of evolutionary algorithms |
title_sort | investigating the parameter space of evolutionary algorithms |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816380/ https://www.ncbi.nlm.nih.gov/pubmed/29467825 http://dx.doi.org/10.1186/s13040-018-0164-x |
work_keys_str_mv | AT sippermoshe investigatingtheparameterspaceofevolutionaryalgorithms AT fuweixuan investigatingtheparameterspaceofevolutionaryalgorithms AT ahujakaruna investigatingtheparameterspaceofevolutionaryalgorithms AT moorejasonh investigatingtheparameterspaceofevolutionaryalgorithms |