Cargando…

High fidelity heralded single-photon source using cavity quantum electrodynamics

Demands for single-photon sources are ubiquitous in quantum information processing as well as in quantum metrology. In many protocols for producing single photons, a cavity-emitter configuration is used. In such cavity quantum electrodynamical systems, the cavity can enforce a well-defined output mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xin, Xu, Chang, Ren, Zhongzhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816608/
https://www.ncbi.nlm.nih.gov/pubmed/29453365
http://dx.doi.org/10.1038/s41598-018-21481-z
Descripción
Sumario:Demands for single-photon sources are ubiquitous in quantum information processing as well as in quantum metrology. In many protocols for producing single photons, a cavity-emitter configuration is used. In such cavity quantum electrodynamical systems, the cavity can enforce a well-defined output mode for the photon and enhance its collection efficiency, while the emitter is indispensable for single photon emission. Here we show the two cavity-one two-level emitter configuration can be used to produce exclusively photon pairs, with each photon in a separate mode. Conditioning on detecting a photon in one of the modes, one heralds with high fidelity a single photon in the other mode. Counterintuitively, upon decreasing the coupling of the emitter to one of the modes, the heralding fidelity can further increase.