Cargando…
Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition
Elevated nitrogen associated with global change is believed to promote the invasion of many vigorous exotic plants. However, it is unclear how a weak exotic plant will respond to elevated nitrogen in the future. In this study, the competitive outcome of a weak invasive plant (Galinsoga quadriradiata...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816611/ https://www.ncbi.nlm.nih.gov/pubmed/29453340 http://dx.doi.org/10.1038/s41598-018-21546-z |
Sumario: | Elevated nitrogen associated with global change is believed to promote the invasion of many vigorous exotic plants. However, it is unclear how a weak exotic plant will respond to elevated nitrogen in the future. In this study, the competitive outcome of a weak invasive plant (Galinsoga quadriradiata) and two non-invasive plants was detected. The plants were subjected to 3 types of culture (mixed, monoculture or one-plant), 2 levels of nitrogen (ambient or elevated at a rate of 2 g m(−2) yr(−1)) and 2 levels of light (65% shade or full sunlight). The results showed that elevated nitrogen significantly promoted the growth of both the weak invader and the non-invasive plants in one-plant pots; however, growth promotion was not observed for the non-invasive species in the mixed culture pots. The presence of G. quadriradiata significantly inhibited the growth of the non-invasive plants, and a decreased negative species interaction was detected as a result of elevated nitrogen. Our results suggest that competitive interactions between G. quadriradiata and the non-invasive plants were altered by elevated nitrogen. It provides exceptional evidence that an initially weak invasive plant can become an aggressive invader through elevated nitrogen deposition. |
---|