Cargando…
Expanding the substrates for a bacterial hydrogenlyase reaction
Escherichia coli produces enzymes dedicated to hydrogen metabolism under anaerobic conditions. In particular, a formate hydrogenlyase (FHL) enzyme is responsible for the majority of hydrogen gas produced under fermentative conditions. FHL comprises a formate dehydrogenase (encoded by fdhF) linked di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817251/ https://www.ncbi.nlm.nih.gov/pubmed/28488566 http://dx.doi.org/10.1099/mic.0.000471 |
_version_ | 1783300838662340608 |
---|---|
author | Lamont, Ciaran M Kelly, Ciarán L Pinske, Constanze Buchanan, Grant Palmer, Tracy Sargent, Frank |
author_facet | Lamont, Ciaran M Kelly, Ciarán L Pinske, Constanze Buchanan, Grant Palmer, Tracy Sargent, Frank |
author_sort | Lamont, Ciaran M |
collection | PubMed |
description | Escherichia coli produces enzymes dedicated to hydrogen metabolism under anaerobic conditions. In particular, a formate hydrogenlyase (FHL) enzyme is responsible for the majority of hydrogen gas produced under fermentative conditions. FHL comprises a formate dehydrogenase (encoded by fdhF) linked directly to [NiFe]-hydrogenase-3 (Hyd-3), and formate is the only natural substrate known for proton reduction by this hydrogenase. In this work, the possibility of engineering an alternative electron donor for hydrogen production has been explored. Rational design and genetic engineering led to the construction of a fusion between Thermotoga maritima ferredoxin (Fd) and Hyd-3. The Fd-Hyd-3 fusion was found to evolve hydrogen when co-produced with T. maritima pyruvate :: ferredoxin oxidoreductase (PFOR), which links pyruvate oxidation to the reduction of ferredoxin. Analysis of the key organic acids produced during fermentation suggested that the PFOR/Fd-Hyd-3 fusion system successfully diverted pyruvate onto a new pathway towards hydrogen production. |
format | Online Article Text |
id | pubmed-5817251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Microbiology Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-58172512018-02-20 Expanding the substrates for a bacterial hydrogenlyase reaction Lamont, Ciaran M Kelly, Ciarán L Pinske, Constanze Buchanan, Grant Palmer, Tracy Sargent, Frank Microbiology (Reading) Short Communication Escherichia coli produces enzymes dedicated to hydrogen metabolism under anaerobic conditions. In particular, a formate hydrogenlyase (FHL) enzyme is responsible for the majority of hydrogen gas produced under fermentative conditions. FHL comprises a formate dehydrogenase (encoded by fdhF) linked directly to [NiFe]-hydrogenase-3 (Hyd-3), and formate is the only natural substrate known for proton reduction by this hydrogenase. In this work, the possibility of engineering an alternative electron donor for hydrogen production has been explored. Rational design and genetic engineering led to the construction of a fusion between Thermotoga maritima ferredoxin (Fd) and Hyd-3. The Fd-Hyd-3 fusion was found to evolve hydrogen when co-produced with T. maritima pyruvate :: ferredoxin oxidoreductase (PFOR), which links pyruvate oxidation to the reduction of ferredoxin. Analysis of the key organic acids produced during fermentation suggested that the PFOR/Fd-Hyd-3 fusion system successfully diverted pyruvate onto a new pathway towards hydrogen production. Microbiology Society 2017-05 2017-05-10 /pmc/articles/PMC5817251/ /pubmed/28488566 http://dx.doi.org/10.1099/mic.0.000471 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Short Communication Lamont, Ciaran M Kelly, Ciarán L Pinske, Constanze Buchanan, Grant Palmer, Tracy Sargent, Frank Expanding the substrates for a bacterial hydrogenlyase reaction |
title | Expanding the substrates for a bacterial hydrogenlyase reaction |
title_full | Expanding the substrates for a bacterial hydrogenlyase reaction |
title_fullStr | Expanding the substrates for a bacterial hydrogenlyase reaction |
title_full_unstemmed | Expanding the substrates for a bacterial hydrogenlyase reaction |
title_short | Expanding the substrates for a bacterial hydrogenlyase reaction |
title_sort | expanding the substrates for a bacterial hydrogenlyase reaction |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817251/ https://www.ncbi.nlm.nih.gov/pubmed/28488566 http://dx.doi.org/10.1099/mic.0.000471 |
work_keys_str_mv | AT lamontciaranm expandingthesubstratesforabacterialhydrogenlyasereaction AT kellyciaranl expandingthesubstratesforabacterialhydrogenlyasereaction AT pinskeconstanze expandingthesubstratesforabacterialhydrogenlyasereaction AT buchanangrant expandingthesubstratesforabacterialhydrogenlyasereaction AT palmertracy expandingthesubstratesforabacterialhydrogenlyasereaction AT sargentfrank expandingthesubstratesforabacterialhydrogenlyasereaction |