Cargando…
User’s Self-Prediction of Performance in Motor Imagery Brain–Computer Interface
Performance variation is a critical issue in motor imagery brain–computer interface (MI-BCI), and various neurophysiological, psychological, and anatomical correlates have been reported in the literature. Although the main aim of such studies is to predict MI-BCI performance for the prescreening of...
Autores principales: | Ahn, Minkyu, Cho, Hohyun, Ahn, Sangtae, Jun, Sung C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818431/ https://www.ncbi.nlm.nih.gov/pubmed/29497370 http://dx.doi.org/10.3389/fnhum.2018.00059 |
Ejemplares similares
-
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
High Theta and Low Alpha Powers May Be Indicative of BCI-Illiteracy in Motor Imagery
por: Ahn, Minkyu, et al.
Publicado: (2013) -
Review of public motor imagery and execution datasets in brain-computer interfaces
por: Gwon, Daeun, et al.
Publicado: (2023) -
Editorial: Deep Learning in Brain-Computer Interface
por: Ahn, Minkyu, et al.
Publicado: (2022) -
Corrigendum: Review of public motor imagery and execution datasets in brain-computer interfaces
por: Gwon, Daeun, et al.
Publicado: (2023)