Cargando…
Poisson traces, D-modules, and symplectic resolutions
We survey the theory of Poisson traces (or zeroth Poisson homology) developed by the authors in a series of recent papers. The goal is to understand this subtle invariant of (singular) Poisson varieties, conditions for it to be finite-dimensional, its relationship to the geometry and topology of sym...
Autores principales: | Etingof, Pavel, Schedler, Travis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818674/ https://www.ncbi.nlm.nih.gov/pubmed/29497236 http://dx.doi.org/10.1007/s11005-017-1024-1 |
Ejemplares similares
-
Symplectic reflection algebras
por: Etingof, P, et al.
Publicado: (2001) -
Normal forms for Poisson maps and symplectic groupoids around Poisson transversals
por: Frejlich, Pedro, et al.
Publicado: (2017) -
Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics
por: Eguchi, Tohru, et al.
Publicado: (2014) -
Poisson brackets on simple Lie algebras and symplectic Lie algebras
por: Alekseevsky, D V, et al.
Publicado: (1993) -
The breadth of symplectic and poisson geometry: festschrift in honor of Alan Weinstein
por: Marsden, Jerrold E, et al.
Publicado: (2007)