Cargando…
Ensemble Methods with Voting Protocols Exhibit Superior Performance for Predicting Cancer Clinical Endpoints and Providing More Complete Coverage of Disease-Related Genes
In genetic data modeling, the use of a limited number of samples for modeling and predicting, especially well below the attribute number, is difficult due to the enormous number of genes detected by a sequencing platform. In addition, many studies commonly use machine learning methods to evaluate ge...
Autores principales: | Jing, Runyu, Liang, Yu, Ran, Yi, Feng, Shengzhong, Wei, Yanjie, He, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818887/ https://www.ncbi.nlm.nih.gov/pubmed/29546047 http://dx.doi.org/10.1155/2018/8124950 |
Ejemplares similares
-
Voting Ensemble Approach for Enhancing Alzheimer’s Disease Classification
por: Chatterjee, Subhajit, et al.
Publicado: (2022) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
por: Osamor, Victor Chukwudi, et al.
Publicado: (2021) -
A Selective Voting Convex-Hull Ensemble Procedure for Personalized Medicine
por: Nagarajan, Radhakrishnan, et al.
Publicado: (2012) -
Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization
por: Mohammedqasim, Hayder, et al.
Publicado: (2022) -
An ensemble learning based IDS using Voting rule: VEL-IDS
por: Emanet, Sura, et al.
Publicado: (2023)