Cargando…
The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image v...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818907/ https://www.ncbi.nlm.nih.gov/pubmed/29546062 http://dx.doi.org/10.1155/2018/5429594 |
_version_ | 1783301106322898944 |
---|---|
author | Marx, Philipp Kowalczyk, Wojciech Demircioglu, Aydin Brault, Gary Neil Wendt, Hermann Shehada, Sharaf-Eldin Tsagakis, Konstantinos El Gabry, Mohamed Jakob, Heinz Wendt, Daniel |
author_facet | Marx, Philipp Kowalczyk, Wojciech Demircioglu, Aydin Brault, Gary Neil Wendt, Hermann Shehada, Sharaf-Eldin Tsagakis, Konstantinos El Gabry, Mohamed Jakob, Heinz Wendt, Daniel |
author_sort | Marx, Philipp |
collection | PubMed |
description | The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image velocimetry (PIV) enabled precise results with high reproducibility, focus on maximal and local peek velocities, strain, and velocity gradients. These flow parameters allow insights into the generation of forces that act on blood cells and the aortic wall. The results showed that the 21 and 23 mm valves have a quite similar performance. Maximal velocities were 3.03 ± 0.1 and 2.87 ± 0.13 m/s; maximal strain E(xx), 913.81 ± 173.25 and 896.15 ± 88.16 1/s; maximal velocity gradient E(yx), 1203.14 ± 221.84 1/s and 1200.81 ± 61.83 1/s. The 25 mm size revealed significantly lower values: maximal velocity, 2.47 ± 0.15 m/s; maximal strain E(xx), 592.98 ± 155.80 1/s; maximal velocity gradient E(yx), 823.71 ± 38.64 1/s. In summary, the 25 mm Magna Ease was able to create a wider, more homogenous flow with lower peak velocities especially for higher flow rates. Despite the wider flow, the velocity values close to the aortic walls did not exceed the level of the smaller valves. |
format | Online Article Text |
id | pubmed-5818907 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-58189072018-03-15 The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis Marx, Philipp Kowalczyk, Wojciech Demircioglu, Aydin Brault, Gary Neil Wendt, Hermann Shehada, Sharaf-Eldin Tsagakis, Konstantinos El Gabry, Mohamed Jakob, Heinz Wendt, Daniel Biomed Res Int Research Article The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image velocimetry (PIV) enabled precise results with high reproducibility, focus on maximal and local peek velocities, strain, and velocity gradients. These flow parameters allow insights into the generation of forces that act on blood cells and the aortic wall. The results showed that the 21 and 23 mm valves have a quite similar performance. Maximal velocities were 3.03 ± 0.1 and 2.87 ± 0.13 m/s; maximal strain E(xx), 913.81 ± 173.25 and 896.15 ± 88.16 1/s; maximal velocity gradient E(yx), 1203.14 ± 221.84 1/s and 1200.81 ± 61.83 1/s. The 25 mm size revealed significantly lower values: maximal velocity, 2.47 ± 0.15 m/s; maximal strain E(xx), 592.98 ± 155.80 1/s; maximal velocity gradient E(yx), 823.71 ± 38.64 1/s. In summary, the 25 mm Magna Ease was able to create a wider, more homogenous flow with lower peak velocities especially for higher flow rates. Despite the wider flow, the velocity values close to the aortic walls did not exceed the level of the smaller valves. Hindawi 2018-01-10 /pmc/articles/PMC5818907/ /pubmed/29546062 http://dx.doi.org/10.1155/2018/5429594 Text en Copyright © 2018 Philipp Marx et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Marx, Philipp Kowalczyk, Wojciech Demircioglu, Aydin Brault, Gary Neil Wendt, Hermann Shehada, Sharaf-Eldin Tsagakis, Konstantinos El Gabry, Mohamed Jakob, Heinz Wendt, Daniel The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis |
title | The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis |
title_full | The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis |
title_fullStr | The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis |
title_full_unstemmed | The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis |
title_short | The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis |
title_sort | fluid dynamical performance of the carpentier-edwards perimount magna ease prosthesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818907/ https://www.ncbi.nlm.nih.gov/pubmed/29546062 http://dx.doi.org/10.1155/2018/5429594 |
work_keys_str_mv | AT marxphilipp thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT kowalczykwojciech thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT demirciogluaydin thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT braultgaryneil thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT wendthermann thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT shehadasharafeldin thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT tsagakiskonstantinos thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT elgabrymohamed thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT jakobheinz thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT wendtdaniel thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT marxphilipp fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT kowalczykwojciech fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT demirciogluaydin fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT braultgaryneil fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT wendthermann fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT shehadasharafeldin fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT tsagakiskonstantinos fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT elgabrymohamed fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT jakobheinz fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis AT wendtdaniel fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis |