Cargando…

The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis

The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image v...

Descripción completa

Detalles Bibliográficos
Autores principales: Marx, Philipp, Kowalczyk, Wojciech, Demircioglu, Aydin, Brault, Gary Neil, Wendt, Hermann, Shehada, Sharaf-Eldin, Tsagakis, Konstantinos, El Gabry, Mohamed, Jakob, Heinz, Wendt, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818907/
https://www.ncbi.nlm.nih.gov/pubmed/29546062
http://dx.doi.org/10.1155/2018/5429594
_version_ 1783301106322898944
author Marx, Philipp
Kowalczyk, Wojciech
Demircioglu, Aydin
Brault, Gary Neil
Wendt, Hermann
Shehada, Sharaf-Eldin
Tsagakis, Konstantinos
El Gabry, Mohamed
Jakob, Heinz
Wendt, Daniel
author_facet Marx, Philipp
Kowalczyk, Wojciech
Demircioglu, Aydin
Brault, Gary Neil
Wendt, Hermann
Shehada, Sharaf-Eldin
Tsagakis, Konstantinos
El Gabry, Mohamed
Jakob, Heinz
Wendt, Daniel
author_sort Marx, Philipp
collection PubMed
description The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image velocimetry (PIV) enabled precise results with high reproducibility, focus on maximal and local peek velocities, strain, and velocity gradients. These flow parameters allow insights into the generation of forces that act on blood cells and the aortic wall. The results showed that the 21 and 23 mm valves have a quite similar performance. Maximal velocities were 3.03 ± 0.1 and 2.87 ± 0.13 m/s; maximal strain E(xx), 913.81 ± 173.25 and 896.15 ± 88.16 1/s; maximal velocity gradient E(yx), 1203.14 ± 221.84 1/s and 1200.81 ± 61.83 1/s. The 25 mm size revealed significantly lower values: maximal velocity, 2.47 ± 0.15 m/s; maximal strain E(xx), 592.98 ± 155.80 1/s; maximal velocity gradient E(yx), 823.71 ± 38.64 1/s. In summary, the 25 mm Magna Ease was able to create a wider, more homogenous flow with lower peak velocities especially for higher flow rates. Despite the wider flow, the velocity values close to the aortic walls did not exceed the level of the smaller valves.
format Online
Article
Text
id pubmed-5818907
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-58189072018-03-15 The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis Marx, Philipp Kowalczyk, Wojciech Demircioglu, Aydin Brault, Gary Neil Wendt, Hermann Shehada, Sharaf-Eldin Tsagakis, Konstantinos El Gabry, Mohamed Jakob, Heinz Wendt, Daniel Biomed Res Int Research Article The aim of the present in vitro study was the evaluation of the fluid dynamical performance of the Carpentier-Edwards PERIMOUNT Magna Ease depending on the prosthetic size (21, 23, and 25 mm) and the cardiac output (3.6–6.4 L/min). A self-constructed flow channel in combination with particle image velocimetry (PIV) enabled precise results with high reproducibility, focus on maximal and local peek velocities, strain, and velocity gradients. These flow parameters allow insights into the generation of forces that act on blood cells and the aortic wall. The results showed that the 21 and 23 mm valves have a quite similar performance. Maximal velocities were 3.03 ± 0.1 and 2.87 ± 0.13 m/s; maximal strain E(xx), 913.81 ± 173.25 and 896.15 ± 88.16 1/s; maximal velocity gradient E(yx), 1203.14 ± 221.84 1/s and 1200.81 ± 61.83 1/s. The 25 mm size revealed significantly lower values: maximal velocity, 2.47 ± 0.15 m/s; maximal strain E(xx), 592.98 ± 155.80 1/s; maximal velocity gradient E(yx), 823.71 ± 38.64 1/s. In summary, the 25 mm Magna Ease was able to create a wider, more homogenous flow with lower peak velocities especially for higher flow rates. Despite the wider flow, the velocity values close to the aortic walls did not exceed the level of the smaller valves. Hindawi 2018-01-10 /pmc/articles/PMC5818907/ /pubmed/29546062 http://dx.doi.org/10.1155/2018/5429594 Text en Copyright © 2018 Philipp Marx et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Marx, Philipp
Kowalczyk, Wojciech
Demircioglu, Aydin
Brault, Gary Neil
Wendt, Hermann
Shehada, Sharaf-Eldin
Tsagakis, Konstantinos
El Gabry, Mohamed
Jakob, Heinz
Wendt, Daniel
The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
title The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
title_full The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
title_fullStr The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
title_full_unstemmed The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
title_short The Fluid Dynamical Performance of the Carpentier-Edwards PERIMOUNT Magna Ease Prosthesis
title_sort fluid dynamical performance of the carpentier-edwards perimount magna ease prosthesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818907/
https://www.ncbi.nlm.nih.gov/pubmed/29546062
http://dx.doi.org/10.1155/2018/5429594
work_keys_str_mv AT marxphilipp thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT kowalczykwojciech thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT demirciogluaydin thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT braultgaryneil thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT wendthermann thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT shehadasharafeldin thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT tsagakiskonstantinos thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT elgabrymohamed thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT jakobheinz thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT wendtdaniel thefluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT marxphilipp fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT kowalczykwojciech fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT demirciogluaydin fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT braultgaryneil fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT wendthermann fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT shehadasharafeldin fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT tsagakiskonstantinos fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT elgabrymohamed fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT jakobheinz fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis
AT wendtdaniel fluiddynamicalperformanceofthecarpentieredwardsperimountmagnaeaseprosthesis