Cargando…
A novel joint analysis framework improves identification of differentially expressed genes in cross disease transcriptomic analysis
MOTIVATION: Detecting differentially expressed (DE) genes between disease and normal control group is one of the most common analyses in genome-wide transcriptomic data. Since most studies don’t have a lot of samples, researchers have used meta-analysis to group different datasets for the same disea...
Autores principales: | Qin, Wenyi, Lu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819186/ https://www.ncbi.nlm.nih.gov/pubmed/29467826 http://dx.doi.org/10.1186/s13040-018-0163-y |
Ejemplares similares
-
A Novel Joint Gene Set Analysis Framework Improves Identification of Enriched Pathways in Cross Disease Transcriptomic Analysis
por: Qin, Wenyi, et al.
Publicado: (2019) -
A framework using topological pathways for deeper analysis of transcriptome data
por: Zhao, Yue, et al.
Publicado: (2020) -
A Novel Framework for the Identification and Analysis of Duplicons between Human and Chimpanzee
por: Chuang, Trees-Juen, et al.
Publicado: (2013) -
A framework for the identification and classification of homogeneous socioeconomic areas in the analysis of health care variation
por: Pinzari, Ludovico, et al.
Publicado: (2018) -
XSAnno: a framework for building ortholog models in cross-species transcriptome comparisons
por: Zhu, Ying, et al.
Publicado: (2014)