Cargando…
Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data
Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land w...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819387/ https://www.ncbi.nlm.nih.gov/pubmed/29358394 http://dx.doi.org/10.1073/pnas.1704665115 |
_version_ | 1783301200468246528 |
---|---|
author | Scanlon, Bridget R. Zhang, Zizhan Save, Himanshu Sun, Alexander Y. Müller Schmied, Hannes van Beek, Ludovicus P. H. Wiese, David N. Wada, Yoshihide Long, Di Reedy, Robert C. Longuevergne, Laurent Döll, Petra Bierkens, Marc F. P. |
author_facet | Scanlon, Bridget R. Zhang, Zizhan Save, Himanshu Sun, Alexander Y. Müller Schmied, Hannes van Beek, Ludovicus P. H. Wiese, David N. Wada, Yoshihide Long, Di Reedy, Robert C. Longuevergne, Laurent Döll, Petra Bierkens, Marc F. P. |
author_sort | Scanlon, Bridget R. |
collection | PubMed |
description | Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤−0.5 km(3)/y) and increasing (≥0.5 km(3)/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km(3)/y, whereas most models estimate decreasing trends (−71 to 11 km(3)/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71–82 km(3)/y) but negative for models (−450 to −12 km(3)/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. |
format | Online Article Text |
id | pubmed-5819387 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-58193872018-02-21 Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data Scanlon, Bridget R. Zhang, Zizhan Save, Himanshu Sun, Alexander Y. Müller Schmied, Hannes van Beek, Ludovicus P. H. Wiese, David N. Wada, Yoshihide Long, Di Reedy, Robert C. Longuevergne, Laurent Döll, Petra Bierkens, Marc F. P. Proc Natl Acad Sci U S A PNAS Plus Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤−0.5 km(3)/y) and increasing (≥0.5 km(3)/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km(3)/y, whereas most models estimate decreasing trends (−71 to 11 km(3)/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71–82 km(3)/y) but negative for models (−450 to −12 km(3)/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. National Academy of Sciences 2018-02-06 2018-01-22 /pmc/articles/PMC5819387/ /pubmed/29358394 http://dx.doi.org/10.1073/pnas.1704665115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Scanlon, Bridget R. Zhang, Zizhan Save, Himanshu Sun, Alexander Y. Müller Schmied, Hannes van Beek, Ludovicus P. H. Wiese, David N. Wada, Yoshihide Long, Di Reedy, Robert C. Longuevergne, Laurent Döll, Petra Bierkens, Marc F. P. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data |
title | Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data |
title_full | Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data |
title_fullStr | Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data |
title_full_unstemmed | Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data |
title_short | Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data |
title_sort | global models underestimate large decadal declining and rising water storage trends relative to grace satellite data |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819387/ https://www.ncbi.nlm.nih.gov/pubmed/29358394 http://dx.doi.org/10.1073/pnas.1704665115 |
work_keys_str_mv | AT scanlonbridgetr globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT zhangzizhan globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT savehimanshu globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT sunalexandery globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT mullerschmiedhannes globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT vanbeekludovicusph globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT wiesedavidn globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT wadayoshihide globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT longdi globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT reedyrobertc globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT longuevergnelaurent globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT dollpetra globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata AT bierkensmarcfp globalmodelsunderestimatelargedecadaldecliningandrisingwaterstoragetrendsrelativetogracesatellitedata |