Cargando…
Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning
OBJECTIVE: Intracranial electroencephalographic (iEEG) recordings contain “bad channels”, which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features. METHODS: The features quantified signals’ variance,...
Autores principales: | Tuyisenge, Viateur, Trebaul, Lena, Bhattacharjee, Manik, Chanteloup-Forêt, Blandine, Saubat-Guigui, Carole, Mîndruţă, Ioana, Rheims, Sylvain, Maillard, Louis, Kahane, Philippe, Taussig, Delphine, David, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5819872/ https://www.ncbi.nlm.nih.gov/pubmed/29353183 http://dx.doi.org/10.1016/j.clinph.2017.12.013 |
Ejemplares similares
-
Variability of Single Pulse Electrical Stimulation Responses Recorded with Intracranial Electroencephalography in Epileptic Patients
por: Jedynak, Maciej, et al.
Publicado: (2022) -
Probabilistic functional tractography of the human cortex revisited
por: Trebaul, Lena, et al.
Publicado: (2018) -
A brain atlas of axonal and synaptic delays based on modelling of cortico-cortical evoked potentials
por: Lemaréchal, Jean-Didier, et al.
Publicado: (2021) -
Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials
por: Trebaul, Lena, et al.
Publicado: (2016) -
IntrAnat Electrodes: A Free Database and Visualization Software for Intracranial Electroencephalographic Data Processed for Case and Group Studies
por: Deman, Pierre, et al.
Publicado: (2018)