Cargando…

Circulating liver-specific microRNAs in cynomolgus monkeys

Circulating microRNAs (miRNAs) can potentially be used as sensitive and specific biomarkers for tissue injury. However, the usefulness of circulating miRNAs as safety biomarkers in nonclinical toxicological studies using nonhuman primates is debatable owing to the limited information on organ-specif...

Descripción completa

Detalles Bibliográficos
Autores principales: Iguchi, Takuma, Sakurai, Ken, Tamai, Satoshi, Mori, Kazuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Toxicologic Pathology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820098/
https://www.ncbi.nlm.nih.gov/pubmed/29479135
http://dx.doi.org/10.1293/tox.2017-0036
_version_ 1783301316408246272
author Iguchi, Takuma
Sakurai, Ken
Tamai, Satoshi
Mori, Kazuhiko
author_facet Iguchi, Takuma
Sakurai, Ken
Tamai, Satoshi
Mori, Kazuhiko
author_sort Iguchi, Takuma
collection PubMed
description Circulating microRNAs (miRNAs) can potentially be used as sensitive and specific biomarkers for tissue injury. However, the usefulness of circulating miRNAs as safety biomarkers in nonclinical toxicological studies using nonhuman primates is debatable owing to the limited information on organ-specific miRNAs. Therefore, a systematic investigation was performed to address this point. We identified organ-specific miRNAs from cynomolgus monkeys by next-generation sequencing analysis, which revealed that miR-122 was only abundant in the liver, whereas miR-192 was abundant in the liver, stomach, intestines, and kidney. The sequences of these miRNAs were identical to their human counterparts. Next, the absolute miR-122 and miR-192 levels were qualified by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to determine the circulating levels of the miRNAs. No significant differences in the levels of circulating miRNAs between sexes were noted, and there was greater interindividual variation in miR-122 (20-fold variation) than in miR-192 (8-fold variation), based on their dynamic ranges. Finally, we evaluated the fluctuation in circulating liver-specific miRNAs in a monkey model of acetaminophen-induced hepatotoxicity. Acetaminophen with L-buthionine-(S,R)-sulfoximine induced hepatotoxicity in all the animals, which was characterized histopathologically by centrilobular necrosis and vacuolation of hepatocytes. Circulating miR-122 and miR-192 levels increased more than ALT levels after 24 h, indicating that circulating miR-122 and miR-192 may serve as sensitive biomarkers for the detection of hepatotoxicity in cynomolgus monkeys. This review describes the fundamental profiles of circulating liver-specific miRNAs in cynomolgus monkeys and focusses on their organ specificity, circulating levels, and fluctuations in drug-induced hepatotoxicity.
format Online
Article
Text
id pubmed-5820098
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Japanese Society of Toxicologic Pathology
record_format MEDLINE/PubMed
spelling pubmed-58200982018-02-23 Circulating liver-specific microRNAs in cynomolgus monkeys Iguchi, Takuma Sakurai, Ken Tamai, Satoshi Mori, Kazuhiko J Toxicol Pathol Research-Article Circulating microRNAs (miRNAs) can potentially be used as sensitive and specific biomarkers for tissue injury. However, the usefulness of circulating miRNAs as safety biomarkers in nonclinical toxicological studies using nonhuman primates is debatable owing to the limited information on organ-specific miRNAs. Therefore, a systematic investigation was performed to address this point. We identified organ-specific miRNAs from cynomolgus monkeys by next-generation sequencing analysis, which revealed that miR-122 was only abundant in the liver, whereas miR-192 was abundant in the liver, stomach, intestines, and kidney. The sequences of these miRNAs were identical to their human counterparts. Next, the absolute miR-122 and miR-192 levels were qualified by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to determine the circulating levels of the miRNAs. No significant differences in the levels of circulating miRNAs between sexes were noted, and there was greater interindividual variation in miR-122 (20-fold variation) than in miR-192 (8-fold variation), based on their dynamic ranges. Finally, we evaluated the fluctuation in circulating liver-specific miRNAs in a monkey model of acetaminophen-induced hepatotoxicity. Acetaminophen with L-buthionine-(S,R)-sulfoximine induced hepatotoxicity in all the animals, which was characterized histopathologically by centrilobular necrosis and vacuolation of hepatocytes. Circulating miR-122 and miR-192 levels increased more than ALT levels after 24 h, indicating that circulating miR-122 and miR-192 may serve as sensitive biomarkers for the detection of hepatotoxicity in cynomolgus monkeys. This review describes the fundamental profiles of circulating liver-specific miRNAs in cynomolgus monkeys and focusses on their organ specificity, circulating levels, and fluctuations in drug-induced hepatotoxicity. Japanese Society of Toxicologic Pathology 2017-09-08 2018-01 /pmc/articles/PMC5820098/ /pubmed/29479135 http://dx.doi.org/10.1293/tox.2017-0036 Text en ©2018 The Japanese Society of Toxicologic Pathology This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research-Article
Iguchi, Takuma
Sakurai, Ken
Tamai, Satoshi
Mori, Kazuhiko
Circulating liver-specific microRNAs in cynomolgus monkeys
title Circulating liver-specific microRNAs in cynomolgus monkeys
title_full Circulating liver-specific microRNAs in cynomolgus monkeys
title_fullStr Circulating liver-specific microRNAs in cynomolgus monkeys
title_full_unstemmed Circulating liver-specific microRNAs in cynomolgus monkeys
title_short Circulating liver-specific microRNAs in cynomolgus monkeys
title_sort circulating liver-specific micrornas in cynomolgus monkeys
topic Research-Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820098/
https://www.ncbi.nlm.nih.gov/pubmed/29479135
http://dx.doi.org/10.1293/tox.2017-0036
work_keys_str_mv AT iguchitakuma circulatingliverspecificmicrornasincynomolgusmonkeys
AT sakuraiken circulatingliverspecificmicrornasincynomolgusmonkeys
AT tamaisatoshi circulatingliverspecificmicrornasincynomolgusmonkeys
AT morikazuhiko circulatingliverspecificmicrornasincynomolgusmonkeys