Cargando…
Machine learning for the meta-analyses of microbial pathogens’ volatile signatures
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognis...
Autores principales: | Palma, Susana I. C. J., Traguedo, Ana P., Porteira, Ana R., Frias, Maria J., Gamboa, Hugo, Roque, Ana C. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820279/ https://www.ncbi.nlm.nih.gov/pubmed/29463885 http://dx.doi.org/10.1038/s41598-018-21544-1 |
Ejemplares similares
-
Author Correction: Machine learning for the meta-analyses of microbial pathogens’ volatile signatures
por: Palma, Susana I. C. J., et al.
Publicado: (2018) -
Effect of film thickness in gelatin hybrid gels for artificial olfaction
por: Esteves, Carina, et al.
Publicado: (2019) -
Microbial Typing by Machine Learned DNA Melt Signatures
por: Andini, Nadya, et al.
Publicado: (2017) -
Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies
por: Esteves, Carina, et al.
Publicado: (2020) -
Tilapia fish microbial spoilage monitored by a single optical gas
sensor
por: Semeano, Ana T.S., et al.
Publicado: (2018)