Cargando…
On approximation and energy estimates for delta 6-convex functions
The smooth approximation and weighted energy estimates for delta 6-convex functions are derived in this research. Moreover, we conclude that if 6-convex functions are closed in uniform norm, then their third derivatives are closed in weighted [Formula: see text] -norm.
Autores principales: | Saleem, Muhammad Shoaib, Pečarić, Josip, Rehman, Nasir, Khan, Muhammad Wahab, Zahoor, Muhammad Sajid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820381/ https://www.ncbi.nlm.nih.gov/pubmed/29497266 http://dx.doi.org/10.1186/s13660-018-1637-7 |
Ejemplares similares
-
Convex functions, partial orderings, and statistical applications
por: Pecaric, Josip E, et al.
Publicado: (1992) -
Refinement of Jensen’s inequality and estimation of f- and Rényi divergence via Montgomery identity
por: Khan, Khuram Ali, et al.
Publicado: (2018) -
$\delta$-convexity in normed linear spaces
por: An, P T, et al.
Publicado: (2002) -
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
por: Naeem, Muhammad, et al.
Publicado: (2013) -
Generalized Steffensen’s inequality by Lidstone interpolation and Montogomery’s identity
por: Fahad, Asfand, et al.
Publicado: (2018)