Cargando…

Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incom...

Descripción completa

Detalles Bibliográficos
Autores principales: Jordan, Jakob, Ippen, Tammo, Helias, Moritz, Kitayama, Itaru, Sato, Mitsuhisa, Igarashi, Jun, Diesmann, Markus, Kunkel, Susanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820465/
https://www.ncbi.nlm.nih.gov/pubmed/29503613
http://dx.doi.org/10.3389/fninf.2018.00002
Descripción
Sumario:State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.