Cargando…
Aerial Images and Convolutional Neural Network for Cotton Bloom Detection
Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aeria...
Autores principales: | Xu, Rui, Li, Changying, Paterson, Andrew H., Jiang, Yu, Sun, Shangpeng, Robertson, Jon S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820543/ https://www.ncbi.nlm.nih.gov/pubmed/29503653 http://dx.doi.org/10.3389/fpls.2017.02235 |
Ejemplares similares
-
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera
por: Jiang, Yu, et al.
Publicado: (2018) -
In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR
por: Sun, Shangpeng, et al.
Publicado: (2018) -
Cotton Yield Estimation From Aerial Imagery Using Machine Learning Approaches
por: Rodriguez-Sanchez, Javier, et al.
Publicado: (2022) -
GPhenoVision: A Ground Mobile System with Multi-modal Imaging for Field-Based High Throughput Phenotyping of Cotton
por: Jiang, Yu, et al.
Publicado: (2018) -
Multispectral imaging and unmanned aerial systems for cotton plant phenotyping
por: Xu, Rui, et al.
Publicado: (2019)