Cargando…
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820581/ https://www.ncbi.nlm.nih.gov/pubmed/29568310 http://dx.doi.org/10.1155/2018/4613740 |
_version_ | 1783301400419106816 |
---|---|
author | Aguilar Cruz, Karen Alicia Zagaceta Álvarez, María Teresa Palma Orozco, Rosaura Medel Juárez, José de Jesús |
author_facet | Aguilar Cruz, Karen Alicia Zagaceta Álvarez, María Teresa Palma Orozco, Rosaura Medel Juárez, José de Jesús |
author_sort | Aguilar Cruz, Karen Alicia |
collection | PubMed |
description | Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. |
format | Online Article Text |
id | pubmed-5820581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-58205812018-03-22 n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation Aguilar Cruz, Karen Alicia Zagaceta Álvarez, María Teresa Palma Orozco, Rosaura Medel Juárez, José de Jesús Comput Intell Neurosci Research Article Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. Hindawi 2018-01-15 /pmc/articles/PMC5820581/ /pubmed/29568310 http://dx.doi.org/10.1155/2018/4613740 Text en Copyright © 2018 Karen Alicia Aguilar Cruz et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Aguilar Cruz, Karen Alicia Zagaceta Álvarez, María Teresa Palma Orozco, Rosaura Medel Juárez, José de Jesús n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation |
title |
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation |
title_full |
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation |
title_fullStr |
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation |
title_full_unstemmed |
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation |
title_short |
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation |
title_sort | n-iterative exponential forgetting factor for eeg signals parameter estimation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820581/ https://www.ncbi.nlm.nih.gov/pubmed/29568310 http://dx.doi.org/10.1155/2018/4613740 |
work_keys_str_mv | AT aguilarcruzkarenalicia niterativeexponentialforgettingfactorforeegsignalsparameterestimation AT zagacetaalvarezmariateresa niterativeexponentialforgettingfactorforeegsignalsparameterestimation AT palmaorozcorosaura niterativeexponentialforgettingfactorforeegsignalsparameterestimation AT medeljuarezjosedejesus niterativeexponentialforgettingfactorforeegsignalsparameterestimation |