Cargando…

n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation

Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters th...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguilar Cruz, Karen Alicia, Zagaceta Álvarez, María Teresa, Palma Orozco, Rosaura, Medel Juárez, José de Jesús
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820581/
https://www.ncbi.nlm.nih.gov/pubmed/29568310
http://dx.doi.org/10.1155/2018/4613740
_version_ 1783301400419106816
author Aguilar Cruz, Karen Alicia
Zagaceta Álvarez, María Teresa
Palma Orozco, Rosaura
Medel Juárez, José de Jesús
author_facet Aguilar Cruz, Karen Alicia
Zagaceta Álvarez, María Teresa
Palma Orozco, Rosaura
Medel Juárez, José de Jesús
author_sort Aguilar Cruz, Karen Alicia
collection PubMed
description Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal.
format Online
Article
Text
id pubmed-5820581
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-58205812018-03-22 n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation Aguilar Cruz, Karen Alicia Zagaceta Álvarez, María Teresa Palma Orozco, Rosaura Medel Juárez, José de Jesús Comput Intell Neurosci Research Article Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal. Hindawi 2018-01-15 /pmc/articles/PMC5820581/ /pubmed/29568310 http://dx.doi.org/10.1155/2018/4613740 Text en Copyright © 2018 Karen Alicia Aguilar Cruz et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Aguilar Cruz, Karen Alicia
Zagaceta Álvarez, María Teresa
Palma Orozco, Rosaura
Medel Juárez, José de Jesús
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
title n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
title_full n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
title_fullStr n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
title_full_unstemmed n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
title_short n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
title_sort n-iterative exponential forgetting factor for eeg signals parameter estimation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820581/
https://www.ncbi.nlm.nih.gov/pubmed/29568310
http://dx.doi.org/10.1155/2018/4613740
work_keys_str_mv AT aguilarcruzkarenalicia niterativeexponentialforgettingfactorforeegsignalsparameterestimation
AT zagacetaalvarezmariateresa niterativeexponentialforgettingfactorforeegsignalsparameterestimation
AT palmaorozcorosaura niterativeexponentialforgettingfactorforeegsignalsparameterestimation
AT medeljuarezjosedejesus niterativeexponentialforgettingfactorforeegsignalsparameterestimation