Cargando…
n-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters th...
Autores principales: | Aguilar Cruz, Karen Alicia, Zagaceta Álvarez, María Teresa, Palma Orozco, Rosaura, Medel Juárez, José de Jesús |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820581/ https://www.ncbi.nlm.nih.gov/pubmed/29568310 http://dx.doi.org/10.1155/2018/4613740 |
Ejemplares similares
-
Equivalent Neural Network Optimal Coefficients Using Forgetting Factor with Sliding Modes
por: Aguilar Cruz, Karen Alicia, et al.
Publicado: (2016) -
Neural Net Gains Estimation Based on an Equivalent Model
por: Aguilar Cruz, Karen Alicia, et al.
Publicado: (2016) -
Novel Generalized Low-Pass Filter with Adjustable Parameters of Exponential-Type Forgetting and Its Application to ECG Signal
por: Petráš, Ivo
Publicado: (2022) -
Exponential Families with External Parameters
por: Favretti, Marco
Publicado: (2022) -
Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data
por: Louzada, Francisco, et al.
Publicado: (2016)