Cargando…
Glycan-Glycan Interaction Determines Shigella Tropism toward Human T Lymphocytes
Direct interactions between bacterial and host glycans have been recently reported to be involved in the binding of pathogenic bacteria to host cells. In the case of Shigella, the Gram-negative enteroinvasive bacterium responsible for acute rectocolitis, such interactions contribute to bacterial adh...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821077/ https://www.ncbi.nlm.nih.gov/pubmed/29440574 http://dx.doi.org/10.1128/mBio.02309-17 |
Sumario: | Direct interactions between bacterial and host glycans have been recently reported to be involved in the binding of pathogenic bacteria to host cells. In the case of Shigella, the Gram-negative enteroinvasive bacterium responsible for acute rectocolitis, such interactions contribute to bacterial adherence to epithelial cells. However, the role of glycans in the tropism of Shigella for immune cells whose glycosylation pattern varies depending on their activation state is unknown. We previously reported that Shigella targets activated, but not nonactivated, human CD4(+) T lymphocytes. Here, we show that nonactivated CD4(+) T lymphocytes can be turned into Shigella-targetable cells upon loading of their plasma membrane with sialylated glycosphingolipids (also termed gangliosides). The Shigella targeting profile of ganglioside-loaded nonactivated T cells is similar to that of activated T cells, with a predominance of injection of effectors from the type III secretion system (T3SS) not resulting in cell invasion. We demonstrate that gangliosides interact with the O-antigen polysaccharide moiety of lipopolysaccharide (LPS), the major bacterial surface antigen, thus promoting Shigella binding to CD4(+) T cells. This binding step is critical for the subsequent injection of T3SS effectors, a step which we univocally demonstrate to be dependent on actin polymerization. Altogether, these findings highlight the critical role of glycan-glycan interactions in Shigella pathogenesis. |
---|