Cargando…

Evaluating the use of stable isotope analysis to infer the feeding ecology of a growing US gray seal (Halichoerus grypus) population

Gray seals (Halichoerus grypus) have been rapidly recolonizing the Northeast US coast, eliciting concern from the fishing industry. However, the ecological effect of this recovery is still unknown and as such, research is needed to better understand how the diet composition of gray seals in US water...

Descripción completa

Detalles Bibliográficos
Autores principales: Lerner, Jacob E., Ono, Kathryn, Hernandez, Keith M., Runstadler, Jonathan A., Puryear, Wendy B., Polito, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821315/
https://www.ncbi.nlm.nih.gov/pubmed/29466372
http://dx.doi.org/10.1371/journal.pone.0192241
Descripción
Sumario:Gray seals (Halichoerus grypus) have been rapidly recolonizing the Northeast US coast, eliciting concern from the fishing industry. However, the ecological effect of this recovery is still unknown and as such, research is needed to better understand how the diet composition of gray seals in US waters will contribute to the ecological impact. While previous research on seal diets has focused on the analysis of hard prey remains, stable isotope analysis presents an alternative method that can be used to describe marine mammal diets when direct observation is impossible. To address this issue, we used stable isotope analysis of gray seal pup vibrissae and lanugo from Monomoy Island, Cape Cod, MA during the 2015/2016 winter breeding season to estimate adult female diet composition during pregnancy. Stable isotope mixing models (SIMM) suggested adult female gray seals were consuming greater amounts of cephalopod prey and less sand lance than previously indicated from analysis of hard prey remains. However, using SIMMs to estimate the diet composition of gray seals remains difficult due to the large number of isotopically similar prey species and uncertainty in tissue-specific, stable isotope trophic enrichment factors. Even so, by combining prey sources into ecologically informative groups and integrating prior information into SIMMs it is possible to obtain additional insights into the diet of this generalist predator.