Cargando…
A new look at the decomposition of agricultural productivity growth incorporating weather effects
Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821354/ https://www.ncbi.nlm.nih.gov/pubmed/29466461 http://dx.doi.org/10.1371/journal.pone.0192432 |
_version_ | 1783301503743688704 |
---|---|
author | Njuki, Eric Bravo-Ureta, Boris E. O’Donnell, Christopher J. |
author_facet | Njuki, Eric Bravo-Ureta, Boris E. O’Donnell, Christopher J. |
author_sort | Njuki, Eric |
collection | PubMed |
description | Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960–2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time. |
format | Online Article Text |
id | pubmed-5821354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58213542018-03-02 A new look at the decomposition of agricultural productivity growth incorporating weather effects Njuki, Eric Bravo-Ureta, Boris E. O’Donnell, Christopher J. PLoS One Research Article Random fluctuations in temperature and precipitation have substantial impacts on agricultural output. However, the contribution of these changing configurations in weather to total factor productivity (TFP) growth has not been addressed explicitly in econometric analyses. Thus, the key objective of this study is to quantify and to investigate the role of changing weather patterns in explaining yearly fluctuations in TFP. For this purpose, we define TFP to be a measure of total output divided by a measure of total input. We estimate a stochastic production frontier model using U.S. state-level agricultural data incorporating growing season temperature and precipitation, and intra-annual standard deviations of temperature and precipitation for the period 1960–2004. We use the estimated parameters of the model to compute a TFP index that has good axiomatic properties. We then decompose TFP growth in each state into weather effects, technological progress, technical efficiency, and scale-mix efficiency changes. This approach improves our understanding of the role of different components of TFP in agricultural productivity growth. We find that annual TFP growth averaged 1.56% between 1960 and 2004. Moreover, we observe substantial heterogeneity in weather effects across states and over time. Public Library of Science 2018-02-21 /pmc/articles/PMC5821354/ /pubmed/29466461 http://dx.doi.org/10.1371/journal.pone.0192432 Text en © 2018 Njuki et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Njuki, Eric Bravo-Ureta, Boris E. O’Donnell, Christopher J. A new look at the decomposition of agricultural productivity growth incorporating weather effects |
title | A new look at the decomposition of agricultural productivity growth incorporating weather effects |
title_full | A new look at the decomposition of agricultural productivity growth incorporating weather effects |
title_fullStr | A new look at the decomposition of agricultural productivity growth incorporating weather effects |
title_full_unstemmed | A new look at the decomposition of agricultural productivity growth incorporating weather effects |
title_short | A new look at the decomposition of agricultural productivity growth incorporating weather effects |
title_sort | new look at the decomposition of agricultural productivity growth incorporating weather effects |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821354/ https://www.ncbi.nlm.nih.gov/pubmed/29466461 http://dx.doi.org/10.1371/journal.pone.0192432 |
work_keys_str_mv | AT njukieric anewlookatthedecompositionofagriculturalproductivitygrowthincorporatingweathereffects AT bravouretaborise anewlookatthedecompositionofagriculturalproductivitygrowthincorporatingweathereffects AT odonnellchristopherj anewlookatthedecompositionofagriculturalproductivitygrowthincorporatingweathereffects AT njukieric newlookatthedecompositionofagriculturalproductivitygrowthincorporatingweathereffects AT bravouretaborise newlookatthedecompositionofagriculturalproductivitygrowthincorporatingweathereffects AT odonnellchristopherj newlookatthedecompositionofagriculturalproductivitygrowthincorporatingweathereffects |