Cargando…
Joint optimization of green vehicle scheduling and routing problem with time-varying speeds
Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consum...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821442/ https://www.ncbi.nlm.nih.gov/pubmed/29466370 http://dx.doi.org/10.1371/journal.pone.0192000 |
_version_ | 1783301519204941824 |
---|---|
author | Zhang, Dezhi Wang, Xin Li, Shuangyan Ni, Nan Zhang, Zhuo |
author_facet | Zhang, Dezhi Wang, Xin Li, Shuangyan Ni, Nan Zhang, Zhuo |
author_sort | Zhang, Dezhi |
collection | PubMed |
description | Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO(2) emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO(2) emissions and the optimal departure time saves on fuel consumption and reduces CO(2) emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. |
format | Online Article Text |
id | pubmed-5821442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58214422018-03-02 Joint optimization of green vehicle scheduling and routing problem with time-varying speeds Zhang, Dezhi Wang, Xin Li, Shuangyan Ni, Nan Zhang, Zhuo PLoS One Research Article Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO(2) emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO(2) emissions and the optimal departure time saves on fuel consumption and reduces CO(2) emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions. Public Library of Science 2018-02-21 /pmc/articles/PMC5821442/ /pubmed/29466370 http://dx.doi.org/10.1371/journal.pone.0192000 Text en © 2018 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhang, Dezhi Wang, Xin Li, Shuangyan Ni, Nan Zhang, Zhuo Joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
title | Joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
title_full | Joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
title_fullStr | Joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
title_full_unstemmed | Joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
title_short | Joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
title_sort | joint optimization of green vehicle scheduling and routing problem with time-varying speeds |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821442/ https://www.ncbi.nlm.nih.gov/pubmed/29466370 http://dx.doi.org/10.1371/journal.pone.0192000 |
work_keys_str_mv | AT zhangdezhi jointoptimizationofgreenvehicleschedulingandroutingproblemwithtimevaryingspeeds AT wangxin jointoptimizationofgreenvehicleschedulingandroutingproblemwithtimevaryingspeeds AT lishuangyan jointoptimizationofgreenvehicleschedulingandroutingproblemwithtimevaryingspeeds AT ninan jointoptimizationofgreenvehicleschedulingandroutingproblemwithtimevaryingspeeds AT zhangzhuo jointoptimizationofgreenvehicleschedulingandroutingproblemwithtimevaryingspeeds |