Cargando…

The effect of varying levels of vehicle automation on drivers’ lane changing behaviour

Much of the Human Factors research into vehicle automation has focused on driver responses to critical scenarios where a crash might occur. However, there is less knowledge about the effects of vehicle automation on drivers’ behaviour during non-critical take-over situations, such as driver-initiate...

Descripción completa

Detalles Bibliográficos
Autores principales: Madigan, Ruth, Louw, Tyron, Merat, Natasha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821455/
https://www.ncbi.nlm.nih.gov/pubmed/29466402
http://dx.doi.org/10.1371/journal.pone.0192190
Descripción
Sumario:Much of the Human Factors research into vehicle automation has focused on driver responses to critical scenarios where a crash might occur. However, there is less knowledge about the effects of vehicle automation on drivers’ behaviour during non-critical take-over situations, such as driver-initiated lane-changing or overtaking. The current driving simulator study, conducted as part of the EC-funded AdaptIVe project, addresses this issue. It uses a within-subjects design to compare drivers’ lane-changing behaviour in conventional manual driving, partially automated driving (PAD) and conditionally automated driving (CAD). In PAD, drivers were required to re-take control from an automated driving system in order to overtake a slow moving vehicle, while in CAD, the driver used the indicator lever to initiate a system-performed overtaking manoeuvre. Results showed that while drivers’ acceptance of both the PAD and CAD systems was high, they generally preferred CAD. A comparison of overtaking positions showed that drivers initiated overtaking manoeuvres slightly later in PAD than in manual driving or CAD. In addition, when compared to conventional driving, drivers had higher deviations in lane positioning and speed, along with higher lateral accelerations during lane changes following PAD. These results indicate that even in situations which are not time-critical, drivers’ vehicle control after automation is degraded compared to conventional driving.