Cargando…
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based...
Autores principales: | Zhang, Yan, An, Lin, Xu, Jie, Zhang, Bo, Zheng, W. Jim, Hu, Ming, Tang, Jijun, Yue, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821732/ https://www.ncbi.nlm.nih.gov/pubmed/29467363 http://dx.doi.org/10.1038/s41467-018-03113-2 |
Ejemplares similares
-
HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data
por: Liu, Tong, et al.
Publicado: (2019) -
HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks
por: Liu, Tong, et al.
Publicado: (2019) -
DeepHiC: A generative adversarial network for enhancing Hi-C data resolution
por: Hong, Hao, et al.
Publicado: (2020) -
HiCARN: resolution enhancement of Hi-C data using cascading residual networks
por: Hicks, Parker, et al.
Publicado: (2022) -
DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data
por: Wang, Bin, et al.
Publicado: (2023)