Cargando…
Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet
Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data d...
Autores principales: | Shiokawa, Yuka, Date, Yasuhiro, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821832/ https://www.ncbi.nlm.nih.gov/pubmed/29467421 http://dx.doi.org/10.1038/s41598-018-20121-w |
Ejemplares similares
-
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Kernel Principal Component Analysis of Coil Compression in Parallel Imaging
por: Chang, Yuchou, et al.
Publicado: (2018) -
Association Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis
por: Zhao, Yang, et al.
Publicado: (2012) -
Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals
por: Ito, Kengo, et al.
Publicado: (2018) -
Gene- or region-based association study via kernel principal component analysis
por: Gao, Qingsong, et al.
Publicado: (2011)