Cargando…
Deep learning based tissue analysis predicts outcome in colorectal cancer
Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue sam...
Autores principales: | Bychkov, Dmitrii, Linder, Nina, Turkki, Riku, Nordling, Stig, Kovanen, Panu E., Verrill, Clare, Walliander, Margarita, Lundin, Mikael, Haglund, Caj, Lundin, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821847/ https://www.ncbi.nlm.nih.gov/pubmed/29467373 http://dx.doi.org/10.1038/s41598-018-21758-3 |
Ejemplares similares
-
Breast cancer outcome prediction with tumour tissue images and machine learning
por: Turkki, Riku, et al.
Publicado: (2019) -
Identification of tumor epithelium and stroma in tissue microarrays using texture analysis
por: Linder, Nina, et al.
Publicado: (2012) -
An open-source, MATLAB based annotation tool for virtual slides
por: Turkki, Riku, et al.
Publicado: (2013) -
Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
por: Turkki, Riku, et al.
Publicado: (2016) -
A Malaria Diagnostic Tool Based on Computer Vision Screening and Visualization of Plasmodium falciparum Candidate Areas in Digitized Blood Smears
por: Linder, Nina, et al.
Publicado: (2014)