Cargando…

Rhinacanthins-rich Extract Enhances Glucose Uptake and Inhibits Adipogenesis in 3T3-L1 Adipocytes and L6 Myotubes

BACKGROUND: Obesity is one of the imperative dynamics in the incidence and intensification of type 2 diabetes mellitus (T2DM). Rhinacanthus nasutus leaf extracts are previously reported for their antidiabetic and antiobesity potential. OBJECTIVE: The present study was performed to evaluate glucose u...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Muhammad Ajmal, Jakkawanpitak, Chanawee, Sermwittayawong, Decha, Panichayupakaranant, Pharkphoom
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822505/
https://www.ncbi.nlm.nih.gov/pubmed/29491638
http://dx.doi.org/10.4103/pm.pm_236_17
Descripción
Sumario:BACKGROUND: Obesity is one of the imperative dynamics in the incidence and intensification of type 2 diabetes mellitus (T2DM). Rhinacanthus nasutus leaf extracts are previously reported for their antidiabetic and antiobesity potential. OBJECTIVE: The present study was performed to evaluate glucose uptake stimulatory and antiadipogenic activities of a standardized rhinacanthins-rich extract (RRE) and its marker compounds namely rhinacanthin-C (RC), rhinacanthin-D (RD), and rhinacanthin-N (RN) in 3T3-L1 and L6 cells. MATERIALS AND METHODS: RRE was prepared by a green extraction process, and the marker compounds (RC, RD, and RN) were isolated from the RRE using a silica gel column chromatography. Glucose uptake stimulation in both 3T3-L1 and L6 cells was performed by quantification of residual glucose in the media using glucose oxidase kit. Antiadipogenic activity in 3T3-L1 adipocytes was performed by intracellular lipids quantification using oil red O dye. RESULTS: At the highest effective dose, RRE (20 μg/mL) exhibited satisfactory glucose uptake stimulatory effect in 3T3-L1 adipocytes that equivalent to RN (20 μg/mL) and the positive control insulin (0.58 μg/mL) but higher than RC (20 μg/mL) and RD (20 μg/mL). In addition, treatments of L6 myotubes showed that RRE (2.5 μg/mL) exhibited potent and equivalent glucose uptake stimulation (>80%) to RC (2.5 μg/mL) and the standard drugs, insulin (2.90 μg/mL) and metformin (219.5 μg/mL), but higher than RD (2.5 μg/mL) and RN (2.5 μg/mL). Furthermore, RRE (20 μg/mL) exhibited potent antiadipogenic effect in 3T3-L1 adipocytes, which equivalent to RC (20 μg/mL) but higher than RD (20 μg/mL) and RN (20 μg/mL). CONCLUSIONS: The undertaken study suggests that RRE could be used as an effective remedy in the treatment of obesity-associated T2DM. SUMMARY: Rhinacanthins-rich extract and its marker compounds showed potent glucose uptake stimulatory activity in 3T3-L1 adipocytes and L6 myotubes. Rhinacanthins-rich extract and rhinacanthin-C showed comparable antiadipogenic effect in 3T3-L1 adipocytes. RRE could be used as an effective remedy in the treatment of obesity-associated T2DM. Abbreviations used: T2DM: Type-2 diabetes mellitus; RRE: Rhinacanthins-rich extract; RC: Rhinacanthin-C; RD: Rhinacanthin-D; RN: Rhinacanthin-N; α-MEM: α-Minimum essential medium; DMEM: Dulbecco's modified Eagle's medium; HS: Horse serum; FBS: Fetal bovine serum; BSA: Bovine serum albumin; IBMX: 3-isobutyl-1-methylxanthine; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; GO: Glucose oxidase; NMR: Nuclear magnetic resonance; HPLC: High-performance liquid chromatography.