Cargando…
Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex
Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons), a subset of GABAergic neurons, greatly shape and synchroniz...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822889/ https://www.ncbi.nlm.nih.gov/pubmed/29593786 http://dx.doi.org/10.1155/2018/9828070 |
_version_ | 1783301776582115328 |
---|---|
author | Liu, Congli Xu, Tao Liu, Xiaopeng Huang, Yina Wang, Haitao Luo, Bin Sun, Jingwu |
author_facet | Liu, Congli Xu, Tao Liu, Xiaopeng Huang, Yina Wang, Haitao Luo, Bin Sun, Jingwu |
author_sort | Liu, Congli |
collection | PubMed |
description | Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons), a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL). Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear) to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear). Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain. |
format | Online Article Text |
id | pubmed-5822889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-58228892018-03-28 Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex Liu, Congli Xu, Tao Liu, Xiaopeng Huang, Yina Wang, Haitao Luo, Bin Sun, Jingwu Neural Plast Research Article Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons), a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL). Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear) to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear). Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain. Hindawi 2018-02-08 /pmc/articles/PMC5822889/ /pubmed/29593786 http://dx.doi.org/10.1155/2018/9828070 Text en Copyright © 2018 Congli Liu et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Liu, Congli Xu, Tao Liu, Xiaopeng Huang, Yina Wang, Haitao Luo, Bin Sun, Jingwu Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex |
title | Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex |
title_full | Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex |
title_fullStr | Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex |
title_full_unstemmed | Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex |
title_short | Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex |
title_sort | acoustic trauma changes the parvalbumin-positive neurons in rat auditory cortex |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822889/ https://www.ncbi.nlm.nih.gov/pubmed/29593786 http://dx.doi.org/10.1155/2018/9828070 |
work_keys_str_mv | AT liucongli acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex AT xutao acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex AT liuxiaopeng acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex AT huangyina acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex AT wanghaitao acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex AT luobin acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex AT sunjingwu acoustictraumachangestheparvalbuminpositiveneuronsinratauditorycortex |