Cargando…
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification
One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene cla...
Autores principales: | Yu, Yunlong, Liu, Fuxian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822919/ https://www.ncbi.nlm.nih.gov/pubmed/29581722 http://dx.doi.org/10.1155/2018/8639367 |
Ejemplares similares
-
Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification
por: Petrovska, Biserka, et al.
Publicado: (2020) -
A Multi-Step Fusion Network for Semantic Segmentation of High-Resolution Aerial Images
por: Yuan, Yirong, et al.
Publicado: (2023) -
Superpixel-Based Feature for Aerial Image Scene Recognition
por: Li, Hongguang, et al.
Publicado: (2018) -
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
por: Li, Linyi, et al.
Publicado: (2017) -
Aerial scene understanding in the wild: Multi-scene recognition via prototype-based memory networks
por: Hua, Yuansheng, et al.
Publicado: (2021)