Cargando…
Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle
Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate u...
Autores principales: | Sharifi, Somayeh, Pakdel, Abbas, Ebrahimi, Mansour, Reecy, James M., Fazeli Farsani, Samaneh, Ebrahimie, Esmaeil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823400/ https://www.ncbi.nlm.nih.gov/pubmed/29470489 http://dx.doi.org/10.1371/journal.pone.0191227 |
Ejemplares similares
-
Systems Biology–Derived Genetic Signatures of Mastitis in Dairy Cattle: A New Avenue for Drug Repurposing
por: Sharifi, Somayeh, et al.
Publicado: (2021) -
Cross-Species Meta-Analysis of Transcriptomic Data in Combination With Supervised Machine Learning Models Identifies the Common Gene Signature of Lactation Process
por: Farhadian, Mohammad, et al.
Publicado: (2018) -
Corrigendum: Cross-Species Meta-Analysis of Transcriptomic Data in Combination With Supervised Machine Learning Models Identifies the Common Gene Signature of Lactation Process
por: Farhadian, Mohammad, et al.
Publicado: (2019) -
Unified Transcriptomic Signature of Arbuscular Mycorrhiza Colonization in Roots of Medicago truncatula by Integration of Machine Learning, Promoter Analysis, and Direct Merging Meta-Analysis
por: Mohammadi-Dehcheshmeh, Manijeh, et al.
Publicado: (2018) -
Machine learning models effectively distinguish attention-deficit/hyperactivity disorder using event-related potentials
por: Ghasemi, Elham, et al.
Publicado: (2022)