Cargando…

MiR-153 regulates expression of hypoxia-inducible factor-1α in refractory epilepsy

Mesial temporal lobe epilepsy (mTLE), the most common type of temporal lobe epilepsy (TLE), is particularly relevant due to its high frequency of therapeutic resistance of anti-epileptic therapies. MicroRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Guo-Hua, An, Feng-Mao, Wang, Yu, Bian, Ming, Wang, Di, Wei, Cheng-Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823594/
https://www.ncbi.nlm.nih.gov/pubmed/29492215
http://dx.doi.org/10.18632/oncotarget.24012
Descripción
Sumario:Mesial temporal lobe epilepsy (mTLE), the most common type of temporal lobe epilepsy (TLE), is particularly relevant due to its high frequency of therapeutic resistance of anti-epileptic therapies. MicroRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE. The present study aimed to explore the expression and functions of miRNA-153 in mTLE. The expression levels of miRNA-153 in refractory TLE patients were evaluated. The bioinformatics analysis showed that the potential target genes of miR-153 were involved in biological processes, molecular functions, and cellular components. miRNA-153 is significantly dysregulated in temporal cortex and plasma of mTLE patients. We identify HIF-1α as a direct target of miRNA-153, and luciferase reporter assays demonstrated that miR-153 could regulate the HIF-1αexpression via 3'-UTR pairing. These data suggest that miR-153 might represent a useful biomarker and treatment target for patients with mTLE.