Cargando…
Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer
Upregulation of the H3K4me3 demethylase JARID1B is linked to acquisition of aggressive, stem cell-like features by many cancer types. However, the utility of emerging JARID1 family inhibitors remains uncertain, in part because JARID1B’s functions in normal development and malignancy are diverse and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823649/ https://www.ncbi.nlm.nih.gov/pubmed/29507668 http://dx.doi.org/10.18632/oncotarget.23739 |
_version_ | 1783301916753657856 |
---|---|
author | Facompre, Nicole D. Harmeyer, Kayla M. Sahu, Varun Gimotty, Phyllis A. Rustgi, Anil K. Nakagawa, Hiroshi Basu, Devraj |
author_facet | Facompre, Nicole D. Harmeyer, Kayla M. Sahu, Varun Gimotty, Phyllis A. Rustgi, Anil K. Nakagawa, Hiroshi Basu, Devraj |
author_sort | Facompre, Nicole D. |
collection | PubMed |
description | Upregulation of the H3K4me3 demethylase JARID1B is linked to acquisition of aggressive, stem cell-like features by many cancer types. However, the utility of emerging JARID1 family inhibitors remains uncertain, in part because JARID1B’s functions in normal development and malignancy are diverse and highly context-specific. In this study, responses of oral squamous cell carcinomas (OSCCs) to catalytic inhibition of JARID1B were assessed using CPI-455, the first tool compound with true JARID1 family selectivity. CPI-455 attenuated clonal sphere and tumor formation by stem-like cells that highly express JARID1B while also depleting the CD44-positive and Aldefluor-high fractions conventionally used to designate OSCC stem cells. Silencing JARID1B abrogated CPI-455’s effects on sphere formation, supporting that the drug acted through this isoform. To further delineate CPI-455’s capacity to block JARID1B’s functions, its biologic effects were compared against those indicated by pathway analysis of the transcriptional profile produced by JARID1B knockdown. Downregulation of multiple gene sets related to stem cell function was consistent with the drug’s observed actions. However, strong E-Cadherin upregulation seen upon silencing JARID1B surprisingly could not be reproduced using CPI-455. Expressing a demethylase-inactive mutant of JARID1B demonstrated suppression of this transcript to be demethylase-independent, and the capacity of mutant JARID1B but not CPI-455 to modulate invasion provided a functional correlate of this finding. These results show that JARID1B catalytic inhibition effectively targets some stem cell-like features of malignancy but also reveal demethylase-independent actions refractory to inhibition. Future application of JARID1 inhibitors in combinatorial use for cancer therapy may be guided by these findings. |
format | Online Article Text |
id | pubmed-5823649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-58236492018-03-05 Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer Facompre, Nicole D. Harmeyer, Kayla M. Sahu, Varun Gimotty, Phyllis A. Rustgi, Anil K. Nakagawa, Hiroshi Basu, Devraj Oncotarget Research Paper Upregulation of the H3K4me3 demethylase JARID1B is linked to acquisition of aggressive, stem cell-like features by many cancer types. However, the utility of emerging JARID1 family inhibitors remains uncertain, in part because JARID1B’s functions in normal development and malignancy are diverse and highly context-specific. In this study, responses of oral squamous cell carcinomas (OSCCs) to catalytic inhibition of JARID1B were assessed using CPI-455, the first tool compound with true JARID1 family selectivity. CPI-455 attenuated clonal sphere and tumor formation by stem-like cells that highly express JARID1B while also depleting the CD44-positive and Aldefluor-high fractions conventionally used to designate OSCC stem cells. Silencing JARID1B abrogated CPI-455’s effects on sphere formation, supporting that the drug acted through this isoform. To further delineate CPI-455’s capacity to block JARID1B’s functions, its biologic effects were compared against those indicated by pathway analysis of the transcriptional profile produced by JARID1B knockdown. Downregulation of multiple gene sets related to stem cell function was consistent with the drug’s observed actions. However, strong E-Cadherin upregulation seen upon silencing JARID1B surprisingly could not be reproduced using CPI-455. Expressing a demethylase-inactive mutant of JARID1B demonstrated suppression of this transcript to be demethylase-independent, and the capacity of mutant JARID1B but not CPI-455 to modulate invasion provided a functional correlate of this finding. These results show that JARID1B catalytic inhibition effectively targets some stem cell-like features of malignancy but also reveal demethylase-independent actions refractory to inhibition. Future application of JARID1 inhibitors in combinatorial use for cancer therapy may be guided by these findings. Impact Journals LLC 2017-12-15 /pmc/articles/PMC5823649/ /pubmed/29507668 http://dx.doi.org/10.18632/oncotarget.23739 Text en Copyright: © 2018 Facompre et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Facompre, Nicole D. Harmeyer, Kayla M. Sahu, Varun Gimotty, Phyllis A. Rustgi, Anil K. Nakagawa, Hiroshi Basu, Devraj Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer |
title | Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer |
title_full | Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer |
title_fullStr | Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer |
title_full_unstemmed | Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer |
title_short | Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer |
title_sort | targeting jarid1b’s demethylase activity blocks a subset of its functions in oral cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823649/ https://www.ncbi.nlm.nih.gov/pubmed/29507668 http://dx.doi.org/10.18632/oncotarget.23739 |
work_keys_str_mv | AT facomprenicoled targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer AT harmeyerkaylam targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer AT sahuvarun targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer AT gimottyphyllisa targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer AT rustgianilk targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer AT nakagawahiroshi targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer AT basudevraj targetingjarid1bsdemethylaseactivityblocksasubsetofitsfunctionsinoralcancer |