Cargando…
The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity
Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AM...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Inc
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823972/ https://www.ncbi.nlm.nih.gov/pubmed/27666489 http://dx.doi.org/10.1016/j.exphem.2016.09.006 |
Sumario: | Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. |
---|