Cargando…
Social structure as a strategy to mitigate the costs of group living: a comparison of gelada and guereza monkeys
In mammals, and especially primates, group size and social complexity are typically correlated. However, we have no general explanation why this is so. I suggest that the answer may lie in one of the costs of group living: mammalian reproductive endocrinology is extremely sensitive to stress, and fo...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825386/ https://www.ncbi.nlm.nih.gov/pubmed/29497179 http://dx.doi.org/10.1016/j.anbehav.2017.12.005 |
Sumario: | In mammals, and especially primates, group size and social complexity are typically correlated. However, we have no general explanation why this is so. I suggest that the answer may lie in one of the costs of group living: mammalian reproductive endocrinology is extremely sensitive to stress, and forms one of the hidden costs of living in groups. Fertility declines with group size widely across the social mammals, including primates, and will ultimately place a constraint on group size. However, some species seem to have been able to mitigate this cost by forming bonded relationships that reduce the impact of experienced aggression, even if rates of aggression remain high. The downside is that they reduce network connectivity and hence risk fragmenting the group by providing fracture lines for group fission. To explore this, I compare network indices and fertility patterns across the same range of group sizes for two species of Old World monkeys, Colobus guereza and Theropithecus gelada: the former relatively unsocial, the latter intensely social with frequent use of grooming-based alliances. Compared to those of the guereza, gelada social networks lose density more slowly, maintain connectedness more effectively and are less likely to fragment as they increase in size. Although fertility declines with group size in both species, in gelada the impact of this effect is deferred to larger group sizes. The differences in fertility and network structure both predict the very different maximum group sizes typical of these two species, as well as the typical sizes at which their groups undergo fission. This finding may explain aspects of wider mammalian sociality. |
---|