Cargando…
A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings
BACKGROUND: EEG may be affected by artefacts hindering the analysis of brain signals. Data-driven methods like independent component analysis (ICA) are successful approaches to remove artefacts from the EEG. However, the ICA-based methods developed so far are often affected by limitations, such as:...
Autores principales: | Tamburro, Gabriella, Fiedler, Patrique, Stone, David, Haueisen, Jens, Comani, Silvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826009/ https://www.ncbi.nlm.nih.gov/pubmed/29492336 http://dx.doi.org/10.7717/peerj.4380 |
Ejemplares similares
-
Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications
por: Stone, David B., et al.
Publicado: (2018) -
Is Brain Dynamics Preserved in the EEG After Automated Artifact Removal? A Validation of the Fingerprint Method and the Automatic Removal of Cardiac Interference Approach Based on Microstate Analysis
por: Tamburro, Gabriella, et al.
Publicado: (2021) -
Dry EEG in Sports Sciences: A Fast and Reliable Tool to Assess Individual Alpha Peak Frequency Changes Induced by Physical Effort
por: di Fronso, Selenia, et al.
Publicado: (2019) -
Automatic Removal of Cardiac Interference (ARCI): A New Approach for EEG Data
por: Tamburro, Gabriella, et al.
Publicado: (2019) -
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011)