Cargando…
GRMDA: Graph Regression for MiRNA-Disease Association Prediction
Nowadays, as more and more associations between microRNAs (miRNAs) and diseases have been discovered, miRNA has gradually become a hot topic in the biological field. Because of the high consumption of time and money on carrying out biological experiments, computational method which can help scientis...
Autores principales: | Chen, Xing, Yang, Jing-Ru, Guan, Na-Na, Li, Jian-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826195/ https://www.ncbi.nlm.nih.gov/pubmed/29515453 http://dx.doi.org/10.3389/fphys.2018.00092 |
Ejemplares similares
-
GIMDA: Graphlet interaction‐based MiRNA‐disease association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
Bipartite graph-based collaborative matrix factorization method for predicting miRNA-disease associations
por: Zhou, Feng, et al.
Publicado: (2021) -
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2016) -
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder
por: Li, Lei, et al.
Publicado: (2021) -
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2018)