Cargando…
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
During drug development, safety is always the most important issue, including a variety of toxicities and adverse drug effects, which should be evaluated in preclinical and clinical trial phases. This review article at first simply introduced the computational methods used in prediction of chemical...
Autores principales: | Yang, Hongbin, Sun, Lixia, Li, Weihua, Liu, Guixia, Tang, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826228/ https://www.ncbi.nlm.nih.gov/pubmed/29515993 http://dx.doi.org/10.3389/fchem.2018.00030 |
Ejemplares similares
-
Corrigendum: In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Chemical rules for optimization of chemical mutagenicity via matched molecular pairs analysis and machine learning methods
por: Lou, Chaofeng, et al.
Publicado: (2023) -
Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
por: Hemmerich, Jennifer, et al.
Publicado: (2020) -
Editorial: In silico Methods for Drug Design and Discovery
por: Brogi, Simone, et al.
Publicado: (2020) -
In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs
por: Gagic, Zarko, et al.
Publicado: (2020)