Cargando…
Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients
Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10–50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI perform...
Autores principales: | Shu, Xiaokang, Chen, Shugeng, Yao, Lin, Sheng, Xinjun, Zhang, Dingguo, Jiang, Ning, Jia, Jie, Zhu, Xiangyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826359/ https://www.ncbi.nlm.nih.gov/pubmed/29515363 http://dx.doi.org/10.3389/fnins.2018.00093 |
Ejemplares similares
-
Enhanced Motor Imagery-Based BCI Performance via Tactile Stimulation on Unilateral Hand
por: Shu, Xiaokang, et al.
Publicado: (2017) -
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
por: Tibrewal, Navneet, et al.
Publicado: (2022) -
Can vibrotactile stimulation and tDCS help inefficient BCI users?
por: Won, Kyungho, et al.
Publicado: (2023) -
Effects of user mental state on EEG-BCI performance
por: Myrden, Andrew, et al.
Publicado: (2015) -
EEG-Based BCI Emotion Recognition: A Survey
por: Torres, Edgar P., et al.
Publicado: (2020)