Cargando…
Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii
Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826530/ https://www.ncbi.nlm.nih.gov/pubmed/29481573 http://dx.doi.org/10.1371/journal.pone.0185039 |
_version_ | 1783302376172552192 |
---|---|
author | Zhan, Yu Marchand, Christophe H. Maes, Alexandre Mauries, Adeline Sun, Yi Dhaliwal, James S. Uniacke, James Arragain, Simon Jiang, Heng Gold, Nicholas D. Martin, Vincent J. J. Lemaire, Stéphane D. Zerges, William |
author_facet | Zhan, Yu Marchand, Christophe H. Maes, Alexandre Mauries, Adeline Sun, Yi Dhaliwal, James S. Uniacke, James Arragain, Simon Jiang, Heng Gold, Nicholas D. Martin, Vincent J. J. Lemaire, Stéphane D. Zerges, William |
author_sort | Zhan, Yu |
collection | PubMed |
description | Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO(2)-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO(2) availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509. |
format | Online Article Text |
id | pubmed-5826530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58265302018-03-19 Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii Zhan, Yu Marchand, Christophe H. Maes, Alexandre Mauries, Adeline Sun, Yi Dhaliwal, James S. Uniacke, James Arragain, Simon Jiang, Heng Gold, Nicholas D. Martin, Vincent J. J. Lemaire, Stéphane D. Zerges, William PLoS One Research Article Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO(2)-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO(2) availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509. Public Library of Science 2018-02-26 /pmc/articles/PMC5826530/ /pubmed/29481573 http://dx.doi.org/10.1371/journal.pone.0185039 Text en © 2018 Zhan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhan, Yu Marchand, Christophe H. Maes, Alexandre Mauries, Adeline Sun, Yi Dhaliwal, James S. Uniacke, James Arragain, Simon Jiang, Heng Gold, Nicholas D. Martin, Vincent J. J. Lemaire, Stéphane D. Zerges, William Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii |
title | Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii |
title_full | Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii |
title_fullStr | Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii |
title_full_unstemmed | Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii |
title_short | Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii |
title_sort | pyrenoid functions revealed by proteomics in chlamydomonas reinhardtii |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826530/ https://www.ncbi.nlm.nih.gov/pubmed/29481573 http://dx.doi.org/10.1371/journal.pone.0185039 |
work_keys_str_mv | AT zhanyu pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT marchandchristopheh pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT maesalexandre pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT mauriesadeline pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT sunyi pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT dhaliwaljamess pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT uniackejames pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT arragainsimon pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT jiangheng pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT goldnicholasd pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT martinvincentjj pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT lemairestephaned pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii AT zergeswilliam pyrenoidfunctionsrevealedbyproteomicsinchlamydomonasreinhardtii |