Cargando…
Recognition of sites of functional specialisation in all known eukaryotic protein kinase families
The conserved function of protein phosphorylation, catalysed by members of protein kinase superfamily, is regulated in different ways in different kinase families. Further, differences in activating triggers, cellular localisation, domain architecture and substrate specificity between kinase familie...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826538/ https://www.ncbi.nlm.nih.gov/pubmed/29438395 http://dx.doi.org/10.1371/journal.pcbi.1005975 |
_version_ | 1783302378120806400 |
---|---|
author | Kalaivani, Raju Reema, Raju Srinivasan, Narayanaswamy |
author_facet | Kalaivani, Raju Reema, Raju Srinivasan, Narayanaswamy |
author_sort | Kalaivani, Raju |
collection | PubMed |
description | The conserved function of protein phosphorylation, catalysed by members of protein kinase superfamily, is regulated in different ways in different kinase families. Further, differences in activating triggers, cellular localisation, domain architecture and substrate specificity between kinase families are also well known. While the transfer of γ-phosphate from ATP to the hydroxyl group of Ser/Thr/Tyr is mediated by a conserved Asp, the characteristic functional and regulatory sites are specialized at the level of families or sub-families. Such family-specific sites of functional specialization are unknown for most families of kinases. In this work, we systematically identify the family-specific residue features by comparing the extent of conservation of physicochemical properties, Shannon entropy and statistical probability of residue distributions between families of kinases. An integrated discriminatory score, which combines these three features, is developed to demarcate the functionally specialized sites in a kinase family from other sites. We achieved an area under ROC curve of 0.992 for the discrimination of kinase families. Our approach was extensively tested on well-studied families CDK and MAPK, wherein specific protein interaction sites and substrate recognition sites were successfully detected (p-value < 0.05). We also find that the known family-specific oncogenic driver mutation sites were scored high by our method. The method was applied to all known kinases encompassing 107 families from diverse eukaryotic organisms leading to a comprehensive list of family-specific functional sites. Apart from other uses, our method facilitates identification of specific protein interaction sites and drug target sites in a kinase family. |
format | Online Article Text |
id | pubmed-5826538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58265382018-03-15 Recognition of sites of functional specialisation in all known eukaryotic protein kinase families Kalaivani, Raju Reema, Raju Srinivasan, Narayanaswamy PLoS Comput Biol Research Article The conserved function of protein phosphorylation, catalysed by members of protein kinase superfamily, is regulated in different ways in different kinase families. Further, differences in activating triggers, cellular localisation, domain architecture and substrate specificity between kinase families are also well known. While the transfer of γ-phosphate from ATP to the hydroxyl group of Ser/Thr/Tyr is mediated by a conserved Asp, the characteristic functional and regulatory sites are specialized at the level of families or sub-families. Such family-specific sites of functional specialization are unknown for most families of kinases. In this work, we systematically identify the family-specific residue features by comparing the extent of conservation of physicochemical properties, Shannon entropy and statistical probability of residue distributions between families of kinases. An integrated discriminatory score, which combines these three features, is developed to demarcate the functionally specialized sites in a kinase family from other sites. We achieved an area under ROC curve of 0.992 for the discrimination of kinase families. Our approach was extensively tested on well-studied families CDK and MAPK, wherein specific protein interaction sites and substrate recognition sites were successfully detected (p-value < 0.05). We also find that the known family-specific oncogenic driver mutation sites were scored high by our method. The method was applied to all known kinases encompassing 107 families from diverse eukaryotic organisms leading to a comprehensive list of family-specific functional sites. Apart from other uses, our method facilitates identification of specific protein interaction sites and drug target sites in a kinase family. Public Library of Science 2018-02-13 /pmc/articles/PMC5826538/ /pubmed/29438395 http://dx.doi.org/10.1371/journal.pcbi.1005975 Text en © 2018 Kalaivani et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kalaivani, Raju Reema, Raju Srinivasan, Narayanaswamy Recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
title | Recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
title_full | Recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
title_fullStr | Recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
title_full_unstemmed | Recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
title_short | Recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
title_sort | recognition of sites of functional specialisation in all known eukaryotic protein kinase families |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826538/ https://www.ncbi.nlm.nih.gov/pubmed/29438395 http://dx.doi.org/10.1371/journal.pcbi.1005975 |
work_keys_str_mv | AT kalaivaniraju recognitionofsitesoffunctionalspecialisationinallknowneukaryoticproteinkinasefamilies AT reemaraju recognitionofsitesoffunctionalspecialisationinallknowneukaryoticproteinkinasefamilies AT srinivasannarayanaswamy recognitionofsitesoffunctionalspecialisationinallknowneukaryoticproteinkinasefamilies |