Cargando…
Identification of PMN-released mutagenic factors in a co-culture model for colitis-associated cancer
Microsatellite instability (MSI) is present in ulcerative colitis (UC) and colitis-associated colorectal cancers (CAC). Certain factors released by polymorphonuclear cells (PMNs) may drive mucosal frameshift mutations resulting in MSI and cancer. Here, we applied a co-culture system with PMNs and co...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826597/ https://www.ncbi.nlm.nih.gov/pubmed/29106440 http://dx.doi.org/10.1093/carcin/bgx118 |
Sumario: | Microsatellite instability (MSI) is present in ulcerative colitis (UC) and colitis-associated colorectal cancers (CAC). Certain factors released by polymorphonuclear cells (PMNs) may drive mucosal frameshift mutations resulting in MSI and cancer. Here, we applied a co-culture system with PMNs and colon epithelial cells to identify such culprit factors. Subjecting HCT116 + chr3 and human colonic epithelial cells (HCEC)-1CT MSI-reporter cell lines harboring mono-, di- or tetranucleotide DNA repeats linked to enhanced green fluorescent protein (EGFP) to activated PMNs induced frameshift mutations within all repeats, as quantified by flow cytometry. Activated PMNs released superoxide and hydrogen peroxide (H(2)O(2)), as measured by lucigenin-amplified chemiluminescence and fluorometry, respectively. Catalase, which scavenges H(2)O(2), reduced such PMN-induced MSI. The NADPH-oxidase inhibitor apocynin, which blocks the oxidative burst in PMNs, similarly inhibited PMN-induced MSI. A bead-based multiplex assay revealed that PMNs release a wide range of cytokines such as interleukin (IL)-8, IL-6 and tumor necrosis factor-α (TNF-α). In vitro, these cytokines increased MSI in colon epithelial cells, and the Janus kinase (JAK) inhibitor tofacitinib abolished IL-6-induced or PMN-induced MSI. Intracellular reactive oxygen species (ROS) formation, as measured by 2’,7’–dichlorofluorescein diacetate (DCFDA) assay, was induced upon cytokine treatment. DNA oxidation upon IL-6 was present, as detected by formamidopyrimidine glycosylase (FPG)-modified comet assay. In conclusion, activated PMNs induce frameshift mutations in colon epithelial cells resulting in MSI. Both oxidative burst with release of ROS and PMN-secreted cytokines, such as IL-8, IL-6 or TNF-α, contribute to MSI. ROS scavengers and/or specific inhibitors of cytokine signaling may delay or prevent cancer development in the setting of colitis. |
---|