Cargando…
A comment on priors for Bayesian occupancy models
Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during su...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826699/ https://www.ncbi.nlm.nih.gov/pubmed/29481554 http://dx.doi.org/10.1371/journal.pone.0192819 |
_version_ | 1783302385833082880 |
---|---|
author | Northrup, Joseph M. Gerber, Brian D. |
author_facet | Northrup, Joseph M. Gerber, Brian D. |
author_sort | Northrup, Joseph M. |
collection | PubMed |
description | Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are “uninformative” or “vague”, such priors can easily be unintentionally highly informative. Here we report on how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts. |
format | Online Article Text |
id | pubmed-5826699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-58266992018-03-19 A comment on priors for Bayesian occupancy models Northrup, Joseph M. Gerber, Brian D. PLoS One Research Article Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are “uninformative” or “vague”, such priors can easily be unintentionally highly informative. Here we report on how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts. Public Library of Science 2018-02-26 /pmc/articles/PMC5826699/ /pubmed/29481554 http://dx.doi.org/10.1371/journal.pone.0192819 Text en © 2018 Northrup, Gerber http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Northrup, Joseph M. Gerber, Brian D. A comment on priors for Bayesian occupancy models |
title | A comment on priors for Bayesian occupancy models |
title_full | A comment on priors for Bayesian occupancy models |
title_fullStr | A comment on priors for Bayesian occupancy models |
title_full_unstemmed | A comment on priors for Bayesian occupancy models |
title_short | A comment on priors for Bayesian occupancy models |
title_sort | comment on priors for bayesian occupancy models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826699/ https://www.ncbi.nlm.nih.gov/pubmed/29481554 http://dx.doi.org/10.1371/journal.pone.0192819 |
work_keys_str_mv | AT northrupjosephm acommentonpriorsforbayesianoccupancymodels AT gerberbriand acommentonpriorsforbayesianoccupancymodels AT northrupjosephm commentonpriorsforbayesianoccupancymodels AT gerberbriand commentonpriorsforbayesianoccupancymodels |