Cargando…
First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries
The integrity of phonon transport properties of large graphene (linear and curved) grain boundaries (GBs) is investigated under the influence of structural and dynamical disorder. To do this, density functional tight‐binding (DFTB) method is combined with atomistic Green's function technique. T...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827104/ https://www.ncbi.nlm.nih.gov/pubmed/29619296 http://dx.doi.org/10.1002/advs.201700365 |
_version_ | 1783302430140661760 |
---|---|
author | Sandonas, Leonardo Medrano Sevinçli, Hâldun Gutierrez, Rafael Cuniberti, Gianaurelio |
author_facet | Sandonas, Leonardo Medrano Sevinçli, Hâldun Gutierrez, Rafael Cuniberti, Gianaurelio |
author_sort | Sandonas, Leonardo Medrano |
collection | PubMed |
description | The integrity of phonon transport properties of large graphene (linear and curved) grain boundaries (GBs) is investigated under the influence of structural and dynamical disorder. To do this, density functional tight‐binding (DFTB) method is combined with atomistic Green's function technique. The results show that curved GBs have lower thermal conductance than linear GBs. Its magnitude depends on the length of the curvature and out‐of‐plane structural distortions at the boundary, having stronger influence the latter one. Moreover, it is found that by increasing the defects at the boundary, the transport properties can strongly be reduced in comparison to the effect produced by heating up the boundary region. This is due to the large reduction of the phonon transmission for in‐plane and out‐of‐plane vibrational modes after increasing the structural disorder in the GBs. |
format | Online Article Text |
id | pubmed-5827104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58271042018-04-04 First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries Sandonas, Leonardo Medrano Sevinçli, Hâldun Gutierrez, Rafael Cuniberti, Gianaurelio Adv Sci (Weinh) Communications The integrity of phonon transport properties of large graphene (linear and curved) grain boundaries (GBs) is investigated under the influence of structural and dynamical disorder. To do this, density functional tight‐binding (DFTB) method is combined with atomistic Green's function technique. The results show that curved GBs have lower thermal conductance than linear GBs. Its magnitude depends on the length of the curvature and out‐of‐plane structural distortions at the boundary, having stronger influence the latter one. Moreover, it is found that by increasing the defects at the boundary, the transport properties can strongly be reduced in comparison to the effect produced by heating up the boundary region. This is due to the large reduction of the phonon transmission for in‐plane and out‐of‐plane vibrational modes after increasing the structural disorder in the GBs. John Wiley and Sons Inc. 2018-01-11 /pmc/articles/PMC5827104/ /pubmed/29619296 http://dx.doi.org/10.1002/advs.201700365 Text en © 2018 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Sandonas, Leonardo Medrano Sevinçli, Hâldun Gutierrez, Rafael Cuniberti, Gianaurelio First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries |
title | First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries |
title_full | First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries |
title_fullStr | First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries |
title_full_unstemmed | First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries |
title_short | First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries |
title_sort | first‐principle‐based phonon transport properties of nanoscale graphene grain boundaries |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827104/ https://www.ncbi.nlm.nih.gov/pubmed/29619296 http://dx.doi.org/10.1002/advs.201700365 |
work_keys_str_mv | AT sandonasleonardomedrano firstprinciplebasedphonontransportpropertiesofnanoscalegraphenegrainboundaries AT sevinclihaldun firstprinciplebasedphonontransportpropertiesofnanoscalegraphenegrainboundaries AT gutierrezrafael firstprinciplebasedphonontransportpropertiesofnanoscalegraphenegrainboundaries AT cunibertigianaurelio firstprinciplebasedphonontransportpropertiesofnanoscalegraphenegrainboundaries |