Cargando…

Sodium enhances indium-gallium interdiffusion in copper indium gallium diselenide photovoltaic absorbers

Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium...

Descripción completa

Detalles Bibliográficos
Autores principales: Colombara, Diego, Werner, Florian, Schwarz, Torsten, Cañero Infante, Ingrid, Fleming, Yves, Valle, Nathalie, Spindler, Conrad, Vacchieri, Erica, Rey, Germain, Guennou, Mael, Bouttemy, Muriel, Manjón, Alba Garzón, Peral Alonso, Inmaculada, Melchiorre, Michele, El Adib, Brahime, Gault, Baptiste, Raabe, Dierk, Dale, Phillip J., Siebentritt, Susanne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827571/
https://www.ncbi.nlm.nih.gov/pubmed/29483504
http://dx.doi.org/10.1038/s41467-018-03115-0
Descripción
Sumario:Copper indium gallium diselenide-based technology provides the most efficient solar energy conversion among all thin-film photovoltaic devices. This is possible due to engineered gallium depth gradients and alkali extrinsic doping. Sodium is well known to impede interdiffusion of indium and gallium in polycrystalline Cu(In,Ga)Se(2) films, thus influencing the gallium depth distribution. Here, however, sodium is shown to have the opposite effect in monocrystalline gallium-free CuInSe(2) grown on GaAs substrates. Gallium in-diffusion from the substrates is enhanced when sodium is incorporated into the film, leading to Cu(In,Ga)Se(2) and Cu(In,Ga)(3)Se(5) phase formation. These results show that sodium does not decrease per se indium and gallium interdiffusion. Instead, it is suggested that sodium promotes indium and gallium intragrain diffusion, while it hinders intergrain diffusion by segregating at grain boundaries. The deeper understanding of dopant-mediated atomic diffusion mechanisms should lead to more effective chemical and electrical passivation strategies, and more efficient solar cells.