Cargando…
Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration
A particle suspended in a fluid within a microfluidic channel experiences a direct acoustic radiation force (ARF) when traveling surface acoustic waves (TSAWs) couple with the fluid at the Rayleigh angle, thus producing two components of the ARF. Most SAW‐based microfluidic devices rely on the horiz...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827645/ https://www.ncbi.nlm.nih.gov/pubmed/29619294 http://dx.doi.org/10.1002/advs.201700285 |
_version_ | 1783302505431564288 |
---|---|
author | Ahmed, Husnain Destgeer, Ghulam Park, Jinsoo Jung, Jin Ho Sung, Hyung Jin |
author_facet | Ahmed, Husnain Destgeer, Ghulam Park, Jinsoo Jung, Jin Ho Sung, Hyung Jin |
author_sort | Ahmed, Husnain |
collection | PubMed |
description | A particle suspended in a fluid within a microfluidic channel experiences a direct acoustic radiation force (ARF) when traveling surface acoustic waves (TSAWs) couple with the fluid at the Rayleigh angle, thus producing two components of the ARF. Most SAW‐based microfluidic devices rely on the horizontal component of the ARF to migrate prefocused particles laterally across a microchannel width. Although the magnitude of the vertical component of the ARF is more than twice the magnitude of the horizontal component, it is long ignored due to polydimethylsiloxane (PDMS) microchannel fabrication limitations and difficulties in particle focusing along the vertical direction. In the present work, a single‐layered PDMS microfluidic chip is devised for hydrodynamically focusing particles in the vertical plane while explicitly taking advantage of the horizontal ARF component to slow down the selected particles and the stronger vertical ARF component to push the particles in the upward direction to realize continuous particle separation. The proposed particle separation device offers high‐throughput operation with purity >97% and recovery rate >99%. It is simple in its fabrication and versatile due to the single‐layered microchannel design, combined with vertical hydrodynamic focusing and the use of both the horizontal and vertical components of the ARF. |
format | Online Article Text |
id | pubmed-5827645 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58276452018-04-04 Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration Ahmed, Husnain Destgeer, Ghulam Park, Jinsoo Jung, Jin Ho Sung, Hyung Jin Adv Sci (Weinh) Full Papers A particle suspended in a fluid within a microfluidic channel experiences a direct acoustic radiation force (ARF) when traveling surface acoustic waves (TSAWs) couple with the fluid at the Rayleigh angle, thus producing two components of the ARF. Most SAW‐based microfluidic devices rely on the horizontal component of the ARF to migrate prefocused particles laterally across a microchannel width. Although the magnitude of the vertical component of the ARF is more than twice the magnitude of the horizontal component, it is long ignored due to polydimethylsiloxane (PDMS) microchannel fabrication limitations and difficulties in particle focusing along the vertical direction. In the present work, a single‐layered PDMS microfluidic chip is devised for hydrodynamically focusing particles in the vertical plane while explicitly taking advantage of the horizontal ARF component to slow down the selected particles and the stronger vertical ARF component to push the particles in the upward direction to realize continuous particle separation. The proposed particle separation device offers high‐throughput operation with purity >97% and recovery rate >99%. It is simple in its fabrication and versatile due to the single‐layered microchannel design, combined with vertical hydrodynamic focusing and the use of both the horizontal and vertical components of the ARF. John Wiley and Sons Inc. 2017-12-22 /pmc/articles/PMC5827645/ /pubmed/29619294 http://dx.doi.org/10.1002/advs.201700285 Text en © 2017 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Ahmed, Husnain Destgeer, Ghulam Park, Jinsoo Jung, Jin Ho Sung, Hyung Jin Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration |
title | Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration |
title_full | Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration |
title_fullStr | Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration |
title_full_unstemmed | Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration |
title_short | Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration |
title_sort | vertical hydrodynamic focusing and continuous acoustofluidic separation of particles via upward migration |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827645/ https://www.ncbi.nlm.nih.gov/pubmed/29619294 http://dx.doi.org/10.1002/advs.201700285 |
work_keys_str_mv | AT ahmedhusnain verticalhydrodynamicfocusingandcontinuousacoustofluidicseparationofparticlesviaupwardmigration AT destgeerghulam verticalhydrodynamicfocusingandcontinuousacoustofluidicseparationofparticlesviaupwardmigration AT parkjinsoo verticalhydrodynamicfocusingandcontinuousacoustofluidicseparationofparticlesviaupwardmigration AT jungjinho verticalhydrodynamicfocusingandcontinuousacoustofluidicseparationofparticlesviaupwardmigration AT sunghyungjin verticalhydrodynamicfocusingandcontinuousacoustofluidicseparationofparticlesviaupwardmigration |