Cargando…
A Multiple Kernel Learning Model Based on p-Norm
By utilizing kernel functions, support vector machines (SVMs) successfully solve the linearly inseparable problems. Subsequently, its applicable areas have been greatly extended. Using multiple kernels (MKs) to improve the SVM classification accuracy has been a hot topic in the SVM research society...
Autores principales: | Qi, Jinshan, Liang, Xun, Xu, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827885/ https://www.ncbi.nlm.nih.gov/pubmed/29606958 http://dx.doi.org/10.1155/2018/1018789 |
Ejemplares similares
-
Group-based local adaptive deep multiple kernel learning with lp norm
por: Ren, Shengbing, et al.
Publicado: (2020) -
L(2)-norm multiple kernel learning and its application to biomedical data fusion
por: Yu, Shi, et al.
Publicado: (2010) -
Weighted p-norm distance t kernel SVM classification algorithm based on improved polarization
por: Liu, Wenbo, et al.
Publicado: (2022) -
Algebras of singular integral operators with kernels controlled by multiple norms
por: Nagel, Alexander, et al.
Publicado: (2019) -
Kernel Entropy Component Analysis with Nongreedy L1-Norm Maximization
por: Ji, Haijin, et al.
Publicado: (2018)