Cargando…

Population-based analysis of ocular Chlamydia trachomatis in trachoma-endemic West African communities identifies genomic markers of disease severity

BACKGROUND: Chlamydia trachomatis (Ct) is the most common infectious cause of blindness and bacterial sexually transmitted infection worldwide. Ct strain-specific differences in clinical trachoma suggest that genetic polymorphisms in Ct may contribute to the observed variability in severity of clini...

Descripción completa

Detalles Bibliográficos
Autores principales: Last, A. R., Pickering, H., Roberts, C. h., Coll, F., Phelan, J., Burr, S. E., Cassama, E., Nabicassa, M., Seth-Smith, H. M. B., Hadfield, J., Cutcliffe, L. T., Clarke, I. N., Mabey, D. C. W., Bailey, R. L., Clark, T. G., Thomson, N. R., Holland, M. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828069/
https://www.ncbi.nlm.nih.gov/pubmed/29482619
http://dx.doi.org/10.1186/s13073-018-0521-x
Descripción
Sumario:BACKGROUND: Chlamydia trachomatis (Ct) is the most common infectious cause of blindness and bacterial sexually transmitted infection worldwide. Ct strain-specific differences in clinical trachoma suggest that genetic polymorphisms in Ct may contribute to the observed variability in severity of clinical disease. METHODS: Using Ct whole genome sequences obtained directly from conjunctival swabs, we studied Ct genomic diversity and associations between Ct genetic polymorphisms with ocular localization and disease severity in a treatment-naïve trachoma-endemic population in Guinea-Bissau, West Africa. RESULTS: All Ct sequences fall within the T2 ocular clade phylogenetically. This is consistent with the presence of the characteristic deletion in trpA resulting in a truncated non-functional protein and the ocular tyrosine repeat regions present in tarP associated with ocular tissue localization. We have identified 21 Ct non-synonymous single nucleotide polymorphisms (SNPs) associated with ocular localization, including SNPs within pmpD (odds ratio, OR = 4.07, p* = 0.001) and tarP (OR = 0.34, p* = 0.009). Eight synonymous SNPs associated with disease severity were found in yjfH (rlmB) (OR = 0.13, p* = 0.037), CTA0273 (OR = 0.12, p* = 0.027), trmD (OR = 0.12, p* = 0.032), CTA0744 (OR = 0.12, p* = 0.041), glgA (OR = 0.10, p* = 0.026), alaS (OR = 0.10, p* = 0.032), pmpE (OR = 0.08, p* = 0.001) and the intergenic region CTA0744–CTA0745 (OR = 0.13, p* = 0.043). CONCLUSIONS: This study demonstrates the extent of genomic diversity within a naturally circulating population of ocular Ct and is the first to describe novel genomic associations with disease severity. These findings direct investigation of host-pathogen interactions that may be important in ocular Ct pathogenesis and disease transmission. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-018-0521-x) contains supplementary material, which is available to authorized users.